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Abstract

In macroeconomics, causal effects are commonly estimated in two steps: by constructing
orthogonalised ‘shocks’, then integrating them into local projections or vector autoregres-
sions. For a general set of estimators, we show analytically that this two-step ‘shock-first’
approach can be problematic for identification and inference relative to a one-step proce-
dure that simply adds appropriate controls directly to outcome regressions. In general,
one- and two-step estimates can differ due to omitted-variable bias in the latter when in-
cluding additional controls in the second stage or when employing non-OLS estimators.
Even in simple OLS settings, where the two approaches can yield identical coefficients,
two-step inference is unnecessarily conservative. In monetary-policy applications control-
ling for central-bank information, one-step estimates indicate that the (dis)inflationary con-
sequences of US monetary policy are more robust than previously realised and less subject
to a ‘price puzzle’.
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1 Introduction

Identifying causal effects is crucial in dynamic macroeconomics (Frisch, 1933). A key challenge

in causal inference is the presence of confounding factors that simultaneously drive the causal

variable and outcome variable of interest. One way to ‘partial out’ the effect of confounding

factors is to include them as controls in a regression with the outcome variable. However,

the macroeconomics literature has typically taken an alternate two-step route: first estimating

‘shocks’ as residuals from a regression of the causal variable on the set of confounding factors,

and then using these shocks in local projections (LPs) or vector auto-regressions (VARs).

This two-step ‘shock-first’ approach is widespread in macroeconomics, with the construc-

tion of a ’shock’ series typically viewed as an essential step when estimating dynamic causal

effects (e.g., Ramey, 2016; Nakamura and Steinsson, 2018b). The approach is used extensively

in the monetary-policy literature—most famously in Romer and Romer (2004) and subsequent

studies controlling for central-bank forecasts or other policy-rule variables.1 A similar two-step

method is used to ‘clean’ high-frequency monetary-policy ‘surprises’ of predictability before

using them in instrumental variable (IV) regressions or VARs (e.g., Miranda-Agrippino and

Ricco, 2021; Bauer and Swanson, 2022; Karnaukh and Vokata, 2022). The method is also used

to estimate the effects of other policies (e.g., fiscal, macroprudential, and trade) and non-policy

variables (e.g., oil-price, technology, sentiment and climate shocks).2 While many studies have

relied on OLS (or IV), two-step approaches have also proved popular in quantile-regression

(QR) settings for estimating the causal effects on conditional quantiles.3

In this paper, we argue that the popular two-step approach is problematic. The crux of

our argument is simple. It is well-known that, with confounding factors, identification can be

achieved via a one-step multivariate regression using confounders as controls. So, we compare

coefficients and standard errors from one- and two-step approaches. Conventional wisdom

holds that the two are equivalent by the Frisch-Waugh-Lovell Theorem (Frisch and Waugh,

1933; Lovell, 1963), but we highlight that this equivalence only holds for estimated OLS coef-

ficients (not standard errors), and only in simple settings rarely used in the literature. Across

a range of applications, we demonstrate that two-step estimation can impair identification

and inference. Further, we describe how one-step estimation can be implemented in common

macroeconomic applications, covering both LPs and VARs.

1E.g.: Coibion (2012); Cloyne and Hürtgen (2016); Tenreyro and Thwaites (2016); Coibion et al. (2017); Cham-
pagne and Sekkel (2018); Chen et al. (2018); Cloyne et al. (2020); Falck et al. (2021); Holm et al. (2021); Cloyne et al.
(2022); Coglianese et al. (2023). Two-step estimation has a longer tradition in the monetary-policy literature going
back to at least Barro (1977).

2Fiscal policy examples include: Corsetti et al. (2012); Auerbach and Gorodnichenko (2013); Miyamoto et al.
(2018); Barattieri et al. (2023). Macroprudential policy examples include: Forbes et al. (2017); Ahnert et al. (2021);
Chari et al. (2022). Barattieri and Cacciatore (2023) and Metiu (2021) apply the two-step approach to trade policy.
Other examples include studies on the effects of shocks to: oil prices (e.g., Kilian, 2009), sentiment (e.g., Al-Amine
and Willems, 2023), technology (e.g., Miranda-Agrippino et al., 2020), geopolitical fragmentation (e.g., Fernandez-
Villaverde et al., 2024) and temperature (e.g., Nath et al., 2023; Bilal and Känzig, 2024).

3E.g.: Linnemann and Winkler (2016); Brandão-Marques et al. (2021); Gelos et al. (2022).
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Identification With Controls. We set the scene by first outlining identification assumptions

necessary for uncovering dynamic causal effects with control variables. We provide suffi-

cient conditions under which one-step regression coefficients can be interpreted as impulse

responses to a structural shock, even though this method does not explicitly construct a ‘shock’

series. Since a one-step OLS regression can be viewed as a special case of identification with

external instruments (Stock and Watson, 2018), we highlight that the one-step approach iden-

tifies impulse responses even when the researcher is unable to recover exactly the structural

shock of interest. We also explain how identification with controls can be understood through

the lens of the potential-outcomes framework (Angrist and Kuersteiner, 2011). We highlight

that under appropriate (albeit strong) conditions, the one-step approach can uncover dynamic

causal effects.

An ‘Omitted-Variable Bias’ (OVB) Result. We then formalise our main result without as-

sumptions about the true data-generating process or underlying causal structures. Our key

insight is to note that the difference between estimated one- and two-step coefficients can be

expressed via an omitted-variable bias (OVB) formula.4 This arises as the two-step approach

excludes potentially relevant variables (i.e. the confounding factors the researcher wishes to

partial out) that are included in the first stage, but then excluded from the second. This result is

general, applying to a range of estimators defined as the unique minimum of some function of

the residuals. Armed with this result, we demonstrate the implications of OVB across a range

of settings, covering OLS, IV and QR.

In OLS, the Frisch-Waugh-Lovell Theorem is our point of departure. When the outcome

variable is directly regressed on the shock without auxiliary controls, the OVB term is zero

such that the one- and two-step approaches yield identical point estimates. However, the

two-step approach still has practical drawbacks. Most notably, two-step standard errors will

be over-estimated if the confounders have explanatory power for the outcome variable. This

result follows directly from comparing standard-error formulas, although we are not aware

that this point has been previously noted in the macroeconomics literature.5

When auxiliary controls are used in the second stage—common in LPs or VARs—the co-

efficient equivalence no longer applies. If the shock is orthogonal to the auxiliary controls,

the OVB term is zero and the one- and two-step approaches will identify the same population

parameter—though issues with two-step standard-errors will remain. If the shock is correlated

with auxiliary controls, then OVB can be non-zero as the two-step effectively fails to partial

out the confounders used in the first stage. We show that these drawbacks of the two-step

approach also carry over to IV settings—since IV estimates are the ratio of OLS estimates—

4Throughout, we refer to OVB as the mechanical difference in regression coefficients between a ‘short’ and ‘long’
regression, where the latter includes more covariates than the former (see Angrist and Pischke, 2009).

5This follows from the regression-anatomy standard-error formula in Angrist and Pischke (2014). Lovell (1963)
also notes that the variance of the two-step residuals are larger than the one-step approach.
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covering cases where orthogonalised shocks are used as ‘external’ instruments in LPs or VARs.

In more general settings, including QR, OVB in the two-step approach is more problematic.

We provide an explicit formula for OVB in this setting, and demonstrate that it will non-zero

even in applications without auxiliary controls.

Applications. Our OVB result has important implications for a range of techniques used in

applied macroeconomics to estimate dynamic causal effects. We illustrate this by revisiting

popular approaches to estimate the dynamic effects of US monetary policy on US Consumer

Price Index (CPI) inflation when controlling for central-bank information. We begin with the

Romer and Romer (2004) approach: constructing monetary ‘shocks’ by regressing changes in

the Federal Funds target rate on Greenbook forecasts and forecast revisions. We then em-

ploy these shocks in a range of LP and VAR specifications to estimate dynamic causal effects,

and compare this with a one-step approach that controls directly for central-bank information

within the LP or VAR. Figure 1 summarises some of our key findings.

First, and most directly, our results have implications for estimation via LPs (Jordà, 2005).

Using an orthogonalised shock directly in a second-stage LP delivers identical IRFs to simply

estimating a one-step LP with appropriate controls—although the two-step approach leads

to overly wide standard errors (Figure 1a). Projecting h-period-ahead inflation on the Romer

and Romer (2004) shock does not produce significant responses at any horizon. In contrast,

estimates are highly significant when using a one-step approach that regresses inflation on

the change in the Federal Funds target rate controlling for the Greenbook forecasts. A more

common approach in the literature is to include additional controls in LPs alongside the shock

measure. In this case, the two-step approach can suffer from a form of OVB, since the auxiliary

controls can serve to ‘undo’ some of the first-stage orthogonalisation. We demonstrate this in

Figure 1b, using lagged CPI, industrial production and unemployment as controls. Here, OVB

is non-zero and removing it with a one-step approach removes a significant portion of the near-

term ‘price puzzle’ identified in previous studies when using this shock series (e.g., Ramey,

2016) and, unlike the two-step, delivers a significant reduction in CPI at longer horizons.

Second, our results extend to recursive structural-VAR (SVAR) estimation. As in the LP

with auxiliary controls, OVB can arise in VARs since lags of the endogenous variables can

serve to ‘undo’ some of the first-stage orthogonalisation. We demonstrate this using the or-

thogonalised Romer and Romer (2004) shock as an ‘internal instrument’ (Plagborg-Møller and

Wolf, 2021) in a recursively-identified SVAR. We order the shock first in the VAR, which also

includes the Federal Funds target rate, consumer prices, industrial production, unemploy-

ment and commodity prices. We contrast this with a one-step approach that uses the Green-

book forecasts as variables in the recursive SVAR, ordered before the Federal Funds target rate,

in turn ordered before the macro variables. Controlling directly for the Greenbook forecasts

within the VAR mitigates the price puzzle in the near term and, again, delivers a significant
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Figure 1: Estimated response of US CPI to a US monetary policy shock

(a) Impulse Response from LP No Controls
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(b) Impulse Response from LP With Controls
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(c) Impulse Response from Internal-Instrument VAR
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(d) Quantile Response at 4-year Horizon from QR-LP
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Notes: Estimated response of US ln(CPI) to US monetary policy shock using two-step shock-identification strat-
egy, as well as alternative one-step estimator that controls directly for central-bank information. Estimated using
monthly data for the period 1972:01-2007:12. Shaded area denotes: 90% confidence bands from Newey and West
(1987) standard errors in panels (a) and (b); 68% confidence bands from wild bootstrap in panel (c); 90% confidence
bands from block bootstrap in panel (d). For more details, see Section 5 and Appendix E.

reduction in CPI further out, unlike the ‘shock-first’ internal-instrument approach (Figure 1c).

Third, our results have implications for estimation of dynamic causal effects via ‘exter-

nal instruments’ in either LPs or VARs (see Stock and Watson, 2018, for a review). Common

external-instruments applications use constructed residuals as instruments, which can gener-

ate issues for both inference and identification. Within LPs, we demonstrate that our empirical

results with and without auxiliary controls using LP-OLS (Figures 1a and 1b), carry over to

an LP-IV setup in which the Romer and Romer (2004) shock is employed as an instrument.

We also use the Romer and Romer (2004) shock within a proxy SVAR (popularised, e.g., by

Mertens and Ravn, 2013; Gertler and Karadi, 2015) and, again, present an alternate one-step

approach that alleviates the issues induced by the two-step approach. We then show how these

issues play out in an application where we use monetary-policy surprises from financial mar-

kets as instruments, but account for central-bank information, akin to Miranda-Agrippino and
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Ricco (2021). Similar to our OLS standard-error results, the two-step approach under-estimates

first-stage F -statistics relative to a one-step IV regression. This is significant in our application:

using the Miranda-Agrippino and Ricco (2021) shock as an instrument delivers a first-stage

F -statistic of close to, or even a little below, 10, while using monetary-policy surprises as an in-

strument and controlling for Greenbook forecasts delivers F -statistics that are around twice as

large—sitting comfortably above the common threshold of 10. This has important implications

for the monetary-policy high-frequency literature, where current best practice orthogonalises

surprises with respect to macro-financial data before integrating them in LPs or VARs, and

where weak instruments and low power are a perennial issue (Bauer and Swanson, 2022).

Fourth, our results have implications for recent literature that goes beyond standard linear-

regression techniques to study the probability of financial crises and drivers of macroeconomic

tail risk (Schularick and Taylor, 2012; Adrian et al., 2019). In particular, our findings are rele-

vant for recent attempts to identify the causal effect of policies on tail risk (see, e.g., Linnemann

and Winkler, 2016; Brandão-Marques et al., 2021; Gelos et al., 2022). These studies have relied

on a two-step approach, which we highlight suffers from QR-OVB relative to a one-step re-

gression. In our empirical application, we consider the response of quantiles of future CPI

to the monetary shock. Focusing on the 4-year-ahead horizon, where the average effects of

monetary policy peak in the other panels, estimates from the two-step approach imply that

changes in monetary policy significantly affect the right-tail of the inflation distribution much

more so than the median (Figure 1d). However, removing the OVB through the one-step ap-

proach reveals a different conclusion: that monetary policy instead acts as a ‘location shifter’

of the entire inflation distribution. More generally, these findings have important implications

for effective policymaking when policymakers are seeking to contain future risks.

Literature. To the best of our knowledge, our paper is the first to explicitly highlight draw-

backs to the two-step approach popular in macroeconomics. The starting point for our paper—

that the two-step approach is equivalent to a regression-control strategy—follows from the

well-known Frisch-Waugh-Lovell theorem.6 Our key contribution is to derive an explicit for-

mula linking the one- and two-step approaches that can be applied across a range of settings,

allowing us to demonstrate where this equivalence breaks down and clearly highlight the

drawbacks of the two-step approach with respect to both inference and identification.

Our findings for standard-error estimation may, at first glance, appear related to results

from a broad literature on inference in econometric models with generated regressors (see,

e.g., Hansen, 2022, for a review). A key result from this literature is that standard-error for-

mulas provide a consistent estimator of true standard errors specifically when testing the null

hypothesis that the coefficient on a generated regressor is zero (Pagan, 1984). More generally,
6This equivalence has been noted in a range of the applied macro literature e.g. variously in: Angrist and

Kuersteiner (2011), Jordà and Taylor (2016), Angrist et al. (2018), Barnichon and Brownlees (2019), Jordà et al.
(2020) and Plagborg-Møller and Wolf (2021).
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a number of papers highlight that standard-error formulas typically under-state the variance

associated with estimated coefficients on generated regressors (see, e.g., Murphy and Topel,

2002, who provide alternate standard-error formulas for this case). We depart from this litera-

ture by arguing that controlling for confounding factors via a two-step approach can amount

to estimating a misspecified model since doing so omits a potentially relevant variable from

the regression with the outcome variable. We show that if in fact the confounding factors have

explanatory power for the outcome variable (as would be expected), then using unadjusted

standard-error formulas in the two-step approach delivers inference that may be unnecessarily

conservative (i.e., the exact opposite of the concern raised in previous literature), even when the

researcher is only concerned with testing the null hypothesis of a zero coefficient.

Outline. The remainder of the paper is structured as follows. Section 2 presents the assump-

tions underpinning identification with controls in a time series setting. Section 3 formalises

our key insight in general form. Section 4 discusses the implications of the OVB in different

settings. Section 5 presents empirical applications. Section 6 concludes.

Notation. We use yt to denote the outcome variable of interest at time t and rt as the causal

variable (e.g., a policy indicator). Throughout, our central focus is on the dynamic causal effect

of r on y—i.e., the impulse response of y to a ‘shock’ to r. We define xt as a (K1+K2)×1 vector

of (non-perfectly-collinear) observable control variables that potentially drive yt and rt. We

partition these controls into x1,t and x2,t, which are K1×1 and K2×1 vectors, respectively. We

allow x2,t to be potentially empty (i.e., K2 ≥ 0), but restrict x1,t to be non-empty (i.e., K1 > 0).

We use A⊥B to denote the OLS population residual from a regression of A on B, and we omit

constant terms in regressions throughout for convenience.

2 Identification of Dynamic Causal Effects with Control Variables

To motivate the ‘one-step’ approach, we briefly review identification with appropriate control

variables. We do so both in the context of a specific data-generating process—the structural

moving-average model (as in Stock and Watson, 2018)—as well as via the potential-outcomes

framework (as in Angrist and Kuersteiner, 2011). Throughout this section, we assume that

conditional-expectation functions are linear, all data is stationary, and dynamic causal effects

are homogenous. We prove the conditions we provide here are sufficient for identification in

Appendix A.

2.1 Structural Moving-Average Model

Following the impulse-propagation paradigm, we start by expressing macroeconomic aggre-

gates as functions of all current and past primitive structural shocks. That is, we assume that
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an N × 1 vector of macroeconomic variables qt follows the following data-generating process:

qt = Θ(L)ϵt (1)

where Θ(L) is the lag polynomial and ϵt comprises M × 1 independent and identically dis-

tributed (i.i.d.) structural shocks (and measurement errors).

Without loss of generality, we assume that rt and yt are the first and second variables,

respectively, in qt. We define the parameter of interest as the impulse response of yt to the first

shock in ϵt, ϵ1,t—i.e., entries in the second row and first column in the matrices comprising

Θ(L), which for a given horizon h are defined as:

Θh,21 ≡ E[yt+h|ϵ1,t = 1]− E[yt+h|ϵ1,t = 0] (2)

We also normalise ϵ1,t to imply a unit on-impact increase in rt for interpretability, so Θ0,11 = 1.

As noted in Stock and Watson (2018), with linearity and stationary, the structural impulse

response (2) is simply the population coefficient in the OLS regression:

yt+h = Θh,21ϵ1,t + ut+h (3)

But, since ϵ1,t is not directly observed, this regression is not feasible. An alternate feasible ap-

proach discussed in Stock and Watson (2018) is to directly identify a plausible shock measure—

with, e.g., narrative or high-frequency techniques—which may potentially be measured with

error. Since these typically do not map one-to-one to the variable that the unit-shock normali-

sation is applied to, IV methods are needed to identify impulse response (2).

A commonly used ‘two-step’ approach involves first estimating (i.e., rather than directly

constructing) a plausible shock measure by regressing rt on some observable covariates xt and

then running regression (3) with ϵ1,t replaced with the estimated residual:

yt+h = βh
2S(r

⊥xt
t ) + u2St+h (4)

where βh
2S captures the impulse response of interest. By Frisch-Waugh-Lovell Theorem, this

estimated impulse response is equivalent to βh
1S in the following one-step regression:

yt+h = βh
1Srt + δxt + u1St+h (5)

2.2 Identification in Structural Moving-Average Model

Although (5) may seem like a natural starting point for estimating dynamic causal effects, it

is rarely taken in the literature where the two-step approach remains prevalent. In monetary-

policy applications, one complaint seems to be that βh
1S in (5) loads directly on a policy variable,

8



not a shock measure, and so unlike βh
2S it cannot be interpreted as capturing the response to a

structural shock. This objection is clearly unfounded since βh
1S and βh

2S are equivalent.

In fact, we now demonstrate that the one-step regression (5) can uncover the impulse re-

sponse (2), even when the researcher is unable to directly recover exactly the shock of interest.

This includes cases where r⊥xt
t is not exactly equivalent to the structural shock of interest ϵ1,t—

e.g., due to some measurement error that is uncorrelated with other shocks. Specifically, the

following conditions are sufficient for βh
1S in (5) to capture the impulse response of interest:

Condition 1. (Identification with Controls in Structural MA Model) (2): (a) E[ϵ⊥xt
1,t r⊥xt

t ] ̸= 0

(relevance); (b) E[ϵ⊥xt
i,t r⊥xt

t ] = 0, ∀i ̸= 1 (contemporaneous exogeneity); (c) E[ϵ⊥xt
t−j r

⊥xt
t ] = 0, j > 0

(lag exogeneity); (d) E[ϵ⊥xt
t+j r

⊥xt
t ] = 0, j > 0 (lead exogeneity).

We formally prove this condition is sufficient in Appendix A.1, although it follows immedi-

ately from noting that the OLS regression (5) is equivalent to an IV regression where rt instru-

ments for itself, and so identifying assumptions reduce to the LP-IV conditions with controls in

Stock and Watson (2018) treating rt as the instrument. Intuitively, the exogenous variation in rt

is now generated purely by the control variables xt rather than by some combination of a sepa-

rate instrumental variable alongside controls, as in standard LP-IV. The relevance condition is

somewhat trivial here with the unit-shock normalisation assumption, reducing to the familiar

OLS collinearity assumption that r⊥xt
t has non-zero variance.7 In addition, lead exogeneity

will generally be satisfied given that structural shocks are i.i.d., such that future shocks should

be uncorrelated with time-t variables. However, the contemporaneous and lag exogeneity as-

sumptions are strong, and clearly depend on the choice of controls xt. Intuitively, the set of

controls must serve to ’partial out’ all other shocks from rt (other than ϵt) – e.g. in a monetary

policy setting, by capturing variables that appear in the policy ’reaction function’.

Although Condition 1 follows from the simple observation that OLS can be viewed as a

special case of IV (where the variable instruments for itself), the implications of this do not ap-

pear to have been generally appreciated in the applied literature. Conventional wisdom seems

to hold that LP-OLS regressions of the form (4) and (5) are only valid when the researcher is

able to exactly observe the shock of interest (i.e., when r⊥xt
t = ϵ1,t), and that only LP-IV is

robust to cases where the researcher only observes a ‘proxy’ for the shock. However, the iden-

tification conditions above highlight that LP-OLS is also robust to cases where the researcher

only observes variation that is correlated with the structural shock of interest and cannot ob-

serve directly the shock itself due to measurement error.8 Additionally, it is also widely held

that identification via recursive-VARs requires (partial) invertibility to estimate the impulse

response of interest (see e.g. Stock and Watson, 2016). But noting that recursive-VARs and LP-

7The unit-shock normalisation, (1) and the exogeneity conditions (b) and (c) imply E[ϵ⊥xt
1,t r⊥xt

t ] = E[(r⊥xt
t )2].

8In particular, the above conditions are satisfied when r⊥xt
t = ϵ1,t + ζt where ζt reflects measurement error

uncorrelated with other shocks. Note that measurement error resulting in r⊥xt
t not scaling one-to-one with ϵ1,t is

explicitly ruled out here by the unit shock normalisation.
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OLS identify exactly the same impulse response (Plagborg-Møller and Wolf, 2021), it is clear

that this only requires the exogeneity conditions detailed above, without necessarily appealing

to invertibility.

2.3 Potential-Outcomes Framework

We now summarise how identification with controls can alternatively be understood through

the lens of the potential-outcomes framework of Angrist and Kuersteiner (2011) and Angrist

et al. (2018), without appealing to the specific structural moving-average model of Section 2.1.

Although the impulse-propagation paradigm remains dominant in macroeconometrics, the

potential-outcomes framework potentially provides a more natural interpretation of identifi-

cation with controls, and allows for simple extensions to other settings (e.g., quantile regres-

sion).

We define the potential outcome yt,h(r) as the value that the observed outcome variable

yt+h would have taken if rt = r for all r ∈ R where R denotes the space of possible values for

the policy. The average causal effect on yt+h of setting r = 1 in time t relative to r = 0 is then:

E [yt,h(1)− yt,h(0)] (6)

This is analogous to equation (2), reframed in terms of counterfactual outcomes for y under

different levels of r, rather than structural shocks to r. Just as we cannot directly observe

structural shocks, we cannot observe counterfactual outcomes and so the expectation in equa-

tion (6) cannot be estimated directly. However, it is straightforward to show that the one-step

regression (5) recovers exactly this causal effect of interest under the following assumption:

Condition 2. (Conditional Independence) yt,h(r) ⊥⊥ rt|xt ∀ r ∈ R.

This ‘selection-on-observables’ condition captures the idea that, conditional on xt, rt is as

good as random – i.e. that xt captures all relevant ’confounding factors’ that simultaneously

drive rt and the outcome variable of interest. This is the counterpart to the exogeneity assump-

tions discussed in Condition 1, and similarly reflects a strong assumption, requiring specific

knowledge of the process determining rt in order to be plausible.

This setup can also be extended to cases where average causal effects are not the focus. If

we define a different object of interest, the causal effect of rt on conditional quantiles of yt+h:

Qτ (yt,h(1)|xt, rt)−Qτ (yt,h(0)|xt, rt) (7)

we can show that, under linearity of the conditional quantile function and Condition 2, the
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causal effect of interest (7) is equal to βh
1S(τ) in the following quantile regression:

yt+h = βh
1S(τ)rt + δ(τ)xt + u1St+h(τ) (8)

The discussion thus far has highlighted the conditions under which one-step regressions

with control variables of the form (5) and (8) can be interpreted as capturing dynamic causal

effects—or impulse responses to structural shocks. None of our discussion so far implies that

the one-step approach is ‘preferable’ to a two-step. Next, we explicitly highlight the drawbacks

of the two-step approach, covering both inference and identification. This allows us to show

that the two-step approach can in general fail to identify dynamic causal effects even when

the (strong) conditions necessary for identification with controls discussed in this section are

satisfied.

3 Omitted-Variable Bias in the Two-Step Approach

We now introduce our general setup to demonstrate our key insight: that differences between

two- and one-step approaches can be expressed in terms of an OVB formula stemming from

the exclusion of potentially relevant variables from the outcome regression in the two-step

approach. We do so without any assumptions on the underlying data-generating process.

3.1 General Setup

We start by defining the two-stage approach in its general form. The two-step approach defines

a ‘shock’ to rt as:

εt = rt − x′
1,tδ (9)

where for now we only impose the restriction that δ is a vector of real numbers, δ ∈ RK1 .

However, we predominantly focus on specific cases where εt is defined as a population OLS

residual from a regression of rt on x1,t, in which case the following holds by construction:

E
[
εtx

′
1,t

]
= 0, where εt can be thought of as ‘purging’ rt of confounding effects from x1,t.

The coefficient of interest β2S is then defined in the second-step (population) regression of

the outcome variable yt on the shock εt and (potentially) additional controls x2,t:

yt = x′
2,tα+ εtβ2S + u2St (10)

where α is a K2 × 1 vector of population regression coefficients pertaining to the controls x2,t.

The coefficients in equation (10) satisfy the following (population) minimisation problem:

{α, β2S} = argmin
a,b

{
E
(
f
(
yt − x′

2,ta− εtb
))}

(11)
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where f(x) is the objective function of the regression (e.g., f(x) = x2 for OLS and f(x) = ρ(x)

for QR, where ρ(x) is the check function). For our purposes, the function f(·) must be well-

defined and have a unique minimum. Beyond that, we place no further restrictions on f(·).
It is important to note the generality of our setup. In addition to subsuming multiple es-

timation methods (i.e., different functional forms for f(·)), it applies to a wide range of appli-

cations in macroeconomics. For instance, when x1,t includes lags of rt plus lagged (and some

contemporaneous) values of other variables, then εt from equation (9) is equivalent to a shock

from a recursively-identified SVAR. Alternatively, x1,t may contain variables that feature in a

’reaction function’ (without necessarily including a fixed number of lags of each variable)—as

in, e.g., Romer and Romer (2004). The outcome variable can also be defined as h-period ahead

values of y, in which case the second-stage regression (10) amounts to a single h-specific re-

gression from a LP with auxiliary controls x2,t that were not used when constructing the shock.

When x2,t includes p lagged values of yt alongside p lags of other macroeconomic variables,

then regression (10) can be thought of as a single equation from a VAR with β2S capturing the

contemporaneous response of yt to εt.9

In line with our discussion in Section 2, we now define the one-step approach as the (pop-

ulation) regression of yt on rt and the full set of controls xt:

yt = x′
1,tθ1 + x′

2,tθ2︸ ︷︷ ︸
≡x′

tθ

+rtβ1S + u1St (12)

where θ is a K × 1 vector of population regression coefficients (where K = K1 +K2) and β1S

is a scalar population regression coefficient. Combined, these coefficients are defined by:

{θ, β1S} = argmin
ϑ,b

{
E
(
f
(
yt − x′

tϑ− rtb
))}

(13)

where the function f(·) matches that used in the second stage of the shock-first regression (11).

3.2 Omitted-Variable Bias Result

We have shown in Section 2 that β1S can be interpreted as the effect of z on y in a variety of

settings under standard (albeit strong) identifying assumptions, so long as (roughly speaking)

xt captures all relevant ’confounding factors’. So we now seek to understand the difference

between β1S and β2S . The following Proposition clarifies that the difference between one- and

two-step coefficients can always be expressed in terms of an OVB formula impacting the latter.

9We explicitly extend our setting to impulse-response estimation via SVARs in Appendices C and D.
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Proposition 1. (OVB in the General Two-Step Approach) Consider the following ‘hybrid’ pop-

ulation regression of yt on εt and the full set of K controls xt:

yt = x′
1,tϕ1 + x′

2,tϕ2︸ ︷︷ ︸
≡x′

tϕ

+εtβHyb + uHyb
t (14)

where εt is defined as in equation (9) for any real vector of coefficients δ ∈ RK1 , where K1 ≤ K, and ϕ

is a K × 1 vector of population regression coefficients that solves:

{ϕ, βHyb} = argmin
φ,b

{
E
(
f
(
yt − x′

tφ− εtb
))}

(15)

where the population objective function f(·) matches that used in two- and one-step regressions (11)

and (13). Then the following holds:

βHyb = β1S and β2S = β1S +Ω

where Ω is defined as omitted-variable bias term that arises from the exclusion of x1,t in (10).

Proof : Substituting εt from (9) into the hybrid estimator (15) and rearranging, we have:

{ϕ, βHyb} = argmin
φ,b

{
E
(
f
(
yt − x′

1,t(φ1 − bδ)− x′
2,tφ2 − rtb

))}
When f(·) has a unique minimand, we know from the one-step minimisation (13) that the

solution to the above minimisation is given by: ϕ2 = θ2, ϕ1 = θ1 + βHybδ, and βHyb = β1S .

Since (14) is the same as (10), albeit with additional covariates, the difference in coefficients

can be expressed in terms of an omitted-variable bias term (i.e., the difference between a ‘long’

and ‘short’ regression that excludes some covariates): β2S = βHyb +Ω =⇒ β2S = β1S +Ω.

In line with the setup in Section 3.1, this Proposition is general. In addition to the require-

ments described there, since our results rely only on the properties of optimisation, they carry

over to in-sample estimated coefficients.10

3.3 Discussion

The result establishes a mechanical link between the one- and two-step coefficients, in a setting

where we remain agnostic about the ‘true’ model. Whether the OVB term Ω reflects genuine

bias is, of course, context-dependent.11 But the result is useful for two reasons.

10Specifically, Proposition 1 holds when E (f(·)) is redefined as the in-sample objective function—e.g., for some
sample of length T , as: 1

T

∑T
t=1 f(x).

11Note that, under the conditions provided in 2, the one-step regression can be interpreted as capturing the causal
effect of rt on yt - and so under these same conditions the Ω term here reflects genuine bias.
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First, it complements earlier discussion in Section 2 by dismissing the potential complaint

that the one-step regression coefficient cannot be interpreted as capturing the response to a

‘shock’ variable. The equivalence between the one-step and hybrid approach highlights that

the coefficient in the one-step regression can always be interpreted as loading on a ’shock’

variable, where the shock is simply defined in relation to the controls. The difference between

the one- and two-step approaches therefore should not be thought of as hinging on whether

the coefficient is interpretable as the effect of ‘shock’. Rather, the two-step approach hinges on

the restriction that the first-stage controls x1,t do not feature in the regression with the outcome

variable. It is hard to understand an economic rationale for imposing this restriction in settings

where the two-step approach is typically applied. This point is particularly clear in our empir-

ical application, where the two-step approach amounts to assuming that central bank forecasts

for inflation are exactly orthogonal to actual future inflation outcomes—an assumption that

unsurprisingly the data strongly rejects. Indeed, the motivation for the first-stage regression is

typically to isolate exogenous variation in rt by partialling out x1,t. But if x1,t does not have

any explanatory power for the outcome variable, this first step will generally not partial out

endogenous variation in rt.

Second, this result allows us to derive an exact analytical formula for the difference between

the one- and two-step coefficients across a range of settings, and highlight exactly when such

OVB may be genuinely problematic. This is even true in cases where no analytical expression

exists for individual coefficients (as in QR). We turn to this in the next section.

4 Omitted-Variable Bias in Specific Settings

Here, we set out the practical implications of Proposition 1 for a range of estimators where the

two-step shock-first approach has been widely applied, specifically: OLS, IV, and QR.

4.1 Ordinary Least Squares (OLS)

Let equations (9), (10) and (12) all be OLS population regressions. Using Proposition 1 and the

OVB formula for OLS, the following Result expresses the difference between coefficients:

Result 1. (OLS) Define coefficients across regressions (9), (10), (12) and (14) as OLS population

regression coefficients. Then the following formula relates the two-step coefficient β2S in equation (10)

and the one-step coefficient β1S in equation (12):

β2S = β1S +ΩOLS

= β1S +
[
AE

[
εtx

′
1,t

]
+E

[
εtx

′
2,t

]
B
]
ϕ1

= β1S +E
[
εtx

′
2,t

]
B ϕ1
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where B ≡
[
E
[
ε2t
]
E
[
x2,tx

′
2,t

]
−E [εtx2,t]E

[
εtx

′
2,t

]]−1
E
[
x2,tx

′
1,t

]
and ϕ1 are coefficient loadings

on x1,t in equation (14).

Proof : Line 1 is from Proposition 1. Line 2 follows from the OLS OVB formula and standard

matrix-partition algebra. Line 3 usesE
[
εtx

′
1,t

]
= 0, since εt is an OLS population residual.

To discuss the implications of this result, we consider two cases.

Case 1. (No Auxiliary Controls) x2,t is an empty vector such that K2 = 0.

We first consider a case where no auxiliary controls are included in the second-stage re-

gression (10). This is a common approach in applied work since, if the first stage (9) is thought

to adequately identify a ‘shock’, then no auxiliary controls are needed in the second stage to

identify the causal effect of interest. In this case, there will be no OVB in the two-step estimator.

The below Corollary formalises this:

Corollary 1. (OLS Equivalence without Controls) Under Case 1, β2S = β1S and β̂2S = β̂1S .

Proof : This follows directly from the Frisch-Waugh-Lovell Theorem.12

In this case, point estimates from the one- and two-step approaches are equivalent. But,

although sample estimates β̂2S and β̂1S are mathematically equivalent, the following Corollary

shows that the two-step approach delivers wider standard-error estimates:

Corollary 2. (OLS Standard Errors without Controls) Under Case 1, when the number of ob-

servations T is large relative to the number of regressors K1, for homoskedastic-only standard error

formulas, the estimated variance of the two-step coefficient β̂2S is weakly greater than the estimated

variance of the one-step coefficient β̂1S :

V̂ar(β̂2S) ≥ V̂ar(β̂1S)

Proof : This follows from that fact that the regression anatomy formula carries over to estimated

standard errors (see, e.g., Angrist and Pischke, 2014), and so:

V̂ar(β̂2S) ≥ V̂ar(β̂1S) ⇐⇒ 1

T − 1
Var(û2St ) ≥ 1

T − (K1 + 1)
Var(û1St )

Note also that the sample residual from the hybrid regression (14), ûHyb
t , and the sample resid-

ual from the one-step regression (12), û1St , are the same—i.e., ûHyb
t = û1St . In addition, since

12Angrist and Pischke (2009) refer to this formulation of Frisch-Waugh-Lovell (FWL) Theorem as the regression-
anatomy formula (p. 27). The ‘standard’ FWL formulation instead states equivalence between β1S and the coef-
ficient from a regression of yt orthogonalised with respect to x1,t on ϵt. This approach—orthogonalising rt and
yt with respect to x1,t and then regressing orthogonalised variables on each other—would deliver identical point
estimates and identical standard error estimates as the one-step approach (see Ding, 2021).
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adding covariates reduces sample residual variance in OLS, then the following must hold:

Var(û2St ) ≥ Var(ûHyb
t ). And so when T is large relative to K1, then: V̂ar(β̂2S) ≥ V̂ar(β̂1S).

The issue with inference arises since excluding x1,t from the second stage excludes a vari-

able that is, by construction, completely uncorrelated with the variable of interest εt, while

(potentially) having explanatory power for yt. If x1,t has no explanatory power for yt then the

standard-error estimates will be equivalent between the one-step and two-step approaches.13

However, since the variables in x1,t are typically selected by the researcher to capture con-

founding factors (i.e., variables that drive not just rt but also yt) this is unlikely to hold. In-

deed, in practical applications this over-estimation of standard errors can be large since x1,t

may have significant explanatory power for yt. We demonstrate this with an application in

Section 5, when x1,t includes forecasts at time t of the outcome variable of interest.

Although Corollary 2 is written for a specific (homoskedastic) case, the insight carries over

to other standard-error formulas. Here, again, the estimated variance of the two-step coef-

ficient will typically be over-estimated relative to the one-step coefficient since in effect the

two-step approach excludes an explanatory variable that is uncorrelated with εt, while hav-

ing explanatory power for yt. We again demonstrate this in our empirical application where

standard errors remain significantly wider for the two-step approach for both White (1980)

heteroskedastic-robust and Newey and West (1987) autocorrelation-robust standard errors.

Case 2. (Auxiliary Controls) x2,t is a non-empty vector such that K2 > 0.

We now consider an alternative case in which controls are included in the second stage,

such that x2,t is non-empty. As we explain in Appendix C, this case generalises to VARs iden-

tified using recursive restriction schemes—including identification in VARs with ‘internal in-

struments’ (Plagborg-Møller and Wolf, 2021). In these cases, lags of endogenous variables in

the VAR, in effect, act as auxiliary controls that can create non-zero OVB. In general, there are

two key reasons researchers seek to include additional controls in this second stage. First, as

we demonstrated above, adding controls that are uncorrelated with εt but have explanatory

power for yt can lower estimated standard errors by ‘mopping up’ variance in the error term.

Second, researchers may be interested in providing ‘additional robustness’ by controlling for

other variables that may correlate with εt in their second-stage regression which were not in-

cluded in the first stage.

We discuss each of these possible reasons in turn. In the first case, the OVB can again be

zero, as the below Corollary states:

13This relates to the discussion in Pagan (1984) pp. 222-233, showing that in models where only a generated
residual appears on the right-hand side, standard-error formulas are valid for a two-step approach.
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Corollary 3. (Specific OLS Equivalence with Controls) Under Case 2, if E
[
εtx

′
2,t

]
= 0, then

β2S = β1S .

Proof : This follows directly from Result 1.

In practice, as long as the first-stage shock is genuinely exogenous (i.e., uncorrelated with

any other drivers of y), then the OVB at the population level will be zero. But there are still

practical drawbacks of the two-step approach in this case. As before, we have thatVar(û2St ) ≥
Var(û1St ) which mechanically inflates estimated standard errors in the two-step approach. In

addition, unlike for Case 1, in-sample estimated coefficients will likely differ across the two-

and one-step approaches, even when the shock identified in the first stage is genuinely exoge-

nous in population. Hence there may be efficiency costs to using the two-step approach.14

Suppose instead that the researcher includes controls in the second-stage regression that are

potentially correlated with the shock constructed in the first stage in an attempt to addition-

ally purge rt of any further confounding factors—a common approach in the macroeconomics

literature, both in estimation via LPs and VARs.15 In this case, by standard Frisch-Waugh-

Lovell arguments, the one-step coefficient will be identical to a two-step approach where the

shock was orthogonalised against x1,t and x2,t in the first stage. Crucially though, the two-step

approach (which excludes x1,t from the second-stage) will not be equivalent to the one-step

approach, and Result 1 provides a formula for the difference in coefficients. Intuitively, the

two-step approach suffers from a form of bias since including x2,t in the outcome regression

serves to ‘undo’ some of the orthogonalisation (with respect to x1,t) from the first stage.

From an economic perspective, the issue can be understood as a failure to correctly identify

a first-stage shock. Viewing rt as a policy variable, suppose the researcher uses the two-step

approach (which includes only x1,t in the first stage), but the ‘true’ policy reaction function in-

cludes both x1,t and x2,t. If the researcher thinks this is a genuine risk, then Result 1 highlights

that it is not sufficient to simply include x2,t as controls in the second stage, and instead the

shock must be re-estimated with x1,t and x2,t as covariates. The one-step approach avoids this

since it does not rely on the correct partitioning of xt into x1,t and x2,t.

4.2 Instrumental Variables (IV)

We now consider the implications of Proposition 1 and Result 1 for estimation via IV. In partic-

ular, we consider a setting where OLS residuals from a first-stage regression are then used

as instruments in an IV regression for the outcome variable of interest yt. This approach

14Pagan (1984) and Murphy and Topel (2002) discuss potential losses in efficiency from two-step procedures in
settings where additional controls are used in the second-stage that are not included in the first stage.

15Recent examples include Cloyne, Hürtgen, and Taylor (2022) who include a rich set of controls in their LP
precisely to purge their constructed shock of any remaining predictability, and also in McKay and Wolf (2023) who
place the Romer and Romer (2004) monetary-policy shock second-to-last in their VAR to additionally purge it of
predictability with respect to contemporaneous variables as a means of securing ‘exogeneity insurance’.
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has been used in a variety of studies that employ generated shocks as external instruments

in either LPs or VARs (e.g., Miranda-Agrippino and Ricco, 2021; Bauer and Swanson, 2022;

Miranda-Agrippino and Ricco, 2023). It also appears in studies that use constructed shocks

as instruments to identify structural macroeconomic equations (e.g., Barnichon and Mesters,

2020; Lewis and Mertens, 2022). As before, we compare this to a ‘one-step’ IV regression with

control variables. Since IV regression coefficients can be expressed as the ratio of OLS regres-

sion coefficients, the problems associated with using a generated residual in a second-stage

OLS regression discussed in the previous sub-section carry over directly to IV.

To discuss the implications for IV, we develop our general setting. We introduce an addi-

tional variable mt, which the researcher wishes to instrument for εt and may differ from rt.16

The two-step approach is now defined as the following (population) IV regression:

yt = mtβ
IV
2S + x′

2,tα+ u2St (16)

where εt (defined as in the previous section as an OLS population residual) instruments for mt

and βIV
2S and α are population regression IV coefficients. We are interested in comparing βIV

2S

to βIV
1S from the following population IV-regression:

yt = mtβ
IV
1S + x′

tθ + u1St (17)

with rt as an instrument for mt. Because just-identified IV coefficients can be written as the

ratio of OLS coefficients from a ‘first-stage’ and ‘reduced-form’ regression (see, e.g., Angrist

and Pischke, 2009, p. 122), we can write:

βIV
2S ≡ βRF

βFS

where βRF and βFS are defined from the following OLS population regressions:

mt = εtβ
FS + x2,tπ

FS + eFS
t and yt = εtβ

RF + x2,tπ
RF + eRF

t

Given this, the results from Section 4.1 carry over almost directly to this setting. Starting

with Case 1, where auxiliary controls x2,t are not included in the second stage, we show that

the two-step approach delivers identical coefficient estimates as the one-step approach, while

potentially over-estimating the degree of uncertainty around these estimates:

Corollary 4. (IV without Controls) Under Case 1, then, if εt is defined as in equation (9), then:

βIV
2S = βIV

1S and β̂IV
2S = β̂IV

1S . In addition, when the number of observations T is large relative to

16Note that when mt ≡ rt, the IV regression coefficients in this section will be (mechanically) equivalent to the
OLS coefficients in the previous section (and so the results from the previous section hold).
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the number of regressors K1, for homoskedastic-only standard error formulas, then: V̂ar( ˆβFS
2S ) ≥

V̂ar( ˆβFS
1S ) and V̂ar( ˆβIV

2S ) ≥ V̂ar( ˆβIV
1S ).

Proof : Coefficient equivalence follows by applying Frisch-Waugh-Lovell Theorem to the nu-

merator and denominator of the IV estimator, the ratio of OLS coefficients. The first result

on estimated standard errors follows from Corollary 2 as it refers to standard errors on OLS

coefficients from a first-stage regression. The proof for IV standard errors is in Appendix B.

These implications of these results are similar to the OLS setting: the two- and one-step

deliver identical coefficient estimates, but with larger estimated standard errors in the former.

Unlike in OLS, there are now two implications of note related to standard-error calculations.

The first is that the two-step approach leads to an under-estimation of F -statistics from the

first stage, implying a tendency to mistakenly reject ‘strong’ instruments as ‘weak’, while the

second relates to an over-estimation of standard errors on the IV-coefficient of interest.

It is also straightforward to show that other results from OLS carry over to IV. In particular,

if auxiliary controls x2,t were included in the IV regression (16), as in Case 2, then βIV
2S will suf-

fer from OVB ifE[εtx′
2,t] ̸= 0. An explicit expression for OVB can be found by simply applying

the formula from Result 1 to the numerator and denominator of the IV estimand. Intuitively,

the bias term here relates to a potential failure of the IV-exogeneity condition. The two-step

approach is equivalent to regressing εt on x2,t and using the residual as an instrument, but

since this residual may be correlated with x1,t it may not be a valid instrument. In contrast,

the one-step approach effectively partials out the full vector xt from rt and uses this as the in-

strument. This result applies most directly to using generated residuals in an LP-IV, although

carries-over to estimation via SVARs identified with external instruments (as we demonstrate

in Appendix D and in our empirical application in Section 5).

4.3 Quantile Regression (QR)

To consider settings where the conditional-expectation function may not be the object of in-

terest, in this sub-section we specifically focus on a case in which, in the first stage, the shock

is constructed via OLS and is then used in a second-stage quantile regression. This approach

has been adopted to study the effects of various policy ‘shocks’ on conditional quantiles of

outcome variables of interest. For example, Linnemann and Winkler (2016) use it to assess the

effects of fiscal policy on the GDP distribution, Gelos et al. (2022) apply it to assess the effects

of capital-flow measures on ‘capital-flows-at-risk’, and Brandão-Marques et al. (2021) study

the influence of macroprudential policy on growth-at-risk.

In this QR setting, we have the following expression for the difference between population

coefficients from a one-step and two-step quantile regression:
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Result 2. (QR) Define the coefficients in equation (9) as OLS population regression coefficients, and

the coefficients in equations (10), (12) and (14) as QR population coefficients for some specific quantile

τ ∈ (0, 1), implying the following functional form for the objective function f(·) in equations (11), (13)

and (15): f(x) = ρτ (x), where ρτ (x) = (τ − 1(x ≤ 0)) is the check function.

Assuming that the conditional quantile function of yt given rt, xt is linear,17 then the following

formula relates the two-step population coefficient at the τ -th quantile β2S(τ) in equation (10) and the

one-step population coefficient β1S(τ) in equation (12):

β2S(τ) = β1S(τ) + ΩQR(τ)

= β1S(τ) +
[
AE

[
wτ ϵtx

′
1,t

]
+E

[
wτεtx

′
2,t

]
B
]
ϕ1(τ)

where: A ≡[E
[
wτε

2
t

]−1
+E

[
wτε

2
t

]−2
E [wτεtx2,t]

[
E
[
wτx2,tx

′
2,t

]
−E

[
wτε

2
t

]−1
E [wτεtx2,t]E

[
wτεtx

′
2,t

]]−1
E [wτεtx2,t]

B ≡
[
E
[
wτx2,tx

′
2,t

]
−E

[
wτε

2
t

]−1
E [wτεtx2,t]E

[
wτεtx

′
2,t

]]−1
E
[
wτx2,tx

′
1,t

]
E
[
wτε

2
t

]
and ϕ1(τ) are coefficient loadings on x1,t in equation (14). In addition the ‘importance weights’ are

defined as:

wτ =
∫ 1
0 f

uHyb
τ

(u [x′
2,tπ(τ) + εtβ(τ)− x′

tϕ(τ)− εtβhyb(τ)]|xt, εt) du/2.

Proof : Line 1 follows from Proposition 1. Line 2 follows from the OVB formula for QR (Angrist,

Chernozhukov, and Fernández-Val, 2006) and standard matrix-partition algebra.

To discuss the practical implications of this result, we again first consider a simple setting

without auxiliary controls in the second-stage regression. In Case 1, unlike in OLS, there can

still be OVB in the two-step estimator. The below Corollary formalises this:

Corollary 5. (OVB in QR without Controls) Under Case 1, the following holds:

β2S(τ) = β1S(τ) + ΩQR(τ)

= β1S(τ) + ϕ1(τ)
E
[
wτεtx

′
1,t

]
E
[
wτε2t

]
where wτ =

∫ 1
0 f

uHyb
τ

[
u
(
εtβ(τ)− x′

1,tϕ1(τ)− εtβhyb(τ)
)
|εt,x′

1,t

]
du/2.

Proof : This follows from Result 2.

Unlike with OLS, even thoughE
[
εtx

′
1,t

]
= 0 by construction, this does not imply ΩQR(τ) =

0. We can still have E
[
ωτεtx

′
1,t

]
̸= 0. In order for OVB to be zero, we need additional assump-

17Linearity here merely helps to simplify the expression for OVB included below. A more general expression
under non-lineairty can be found in Angrist et al. (2006).
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tions, which are unlikely to hold in practical applications. For example, if the importance

weights wτ are constant across
[
εt,x

′
1,t

]
then it is straightforward to show that ΩQR(τ) = 0. As

Angrist et al. (2006) explain, the importance weights will be constant across right-hand side

variables when the model for yt is a pure location model. But this assumption is unlikely to

hold in practice given the motivation for using quantile regression to estimate equation (10)

rests on the idea that the covariates have differing effects across quantiles, which would be

missed by estimation via OLS.

The situation is similar when moving to settings where auxiliary controls are included in

the second-stage regression. In this Case 2, unlike in OLS, OVB can be non-zero in QR when

the shock is constructed to be uncorrelated with other drivers of yt, i.e.: E
[
εtx

′
2,t

]
= 0 ⇏

β2S(τ) = β1S(τ).

As discussed in Section 2, a one-step quantile regression can be interpreted as the causal

effect of rt on conditional quantiles of yt under a standard ‘selection-on-observables’ assump-

tion. Under this same assumption then, the omitted variable bias term here reflects ‘genuine’

bias. Intuitively, the two-step bias in the identification of causal effects arises from two sources.

First, it is well-known that identification of quantile treatment effects requires that treatment

is fully independent (i.e., not just mean-independent) of potential outcomes. This assumption

can fail for the two-step approach even when rt is fully independent of potential outcomes

conditional on x1,t, since εt may not be fully independent of x1,t (as would be the case under

heteroskedasticity in the first-stage shock-identification regression). Second, even when εt is

fully independent of potential outcomes, the two-step procedure does not capture the effect

on conditional quantiles for the same conditioning set as the one-step procedure since x1,t are

excluded from the regression.

5 Empirical Applications

We now illustrate our theoretical results with a series of empirical applications, analysing the

dynamic effects of US monetary shocks controlling for central-bank information. Focusing on

the responses of US CPI, we illustrate our theoretical results for each of the three estimators

discussed in Section 4 in turn: OLS, IV, and QR, covering estimation by both LPs and VARs.

We explain how these applications have important implications for the vast empirical literature

studying the causal effects of monetary policy.

For most applications, we use common data. To estimate the first-stage US monetary

shocks ε̂mp
t , orthogonalised with respect to central-bank information, we use the Romer and

Romer (2004) specification. The shock is constructed by regressing the change in the Federal

Funds target rate ∆it on the previous target rate it−1, as well as past and future Greenbook
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forecasts of GDP growth ∆yet , inflation πe
t and unemployment uet , as well as their revisions:

∆it =δ0 + δ1it−1 +

2∑
i=−1

[
δ2,i∆yet,i + δ3,i(∆yet,i −∆yet−1,i) + δ4,iπ

e
t,i + δ5,i(π

e
t,i − πe

t−1,i)
]

+ δ6u
e
t,0 + εmp

t (18)

This is analogous to equation (9) from our theoretical results defining rt as the change in the

Federal Funds target rate and x1,t as a vector of controls including the previous target rate

alongside Greenbook forecasts and forecast revisions. We discuss the construction of these

shocks in further detail in Appendix E.

In our specifications, we also include additional auxiliary controls alongside ε̂mp
t —i.e., x2,t

from our general setup. Throughout, we include lags of the following in the set of auxiliary

controls: industrial production, consumer prices and the unemployment rate.

5.1 Ordinary Least Squares

We first estimate US monetary policy’s effects on US CPI by employing our shocks in LPs,

estimated by OLS, and as internal instruments in recursive SVARs.

Local Projections (LP-OLS). We estimate the effects of the shocks using a second-stage LP:18

ln(CPIt+h)− ln(CPIt−1) = αh
0 + x′

2,tα
h + ε̂mp

t βh
2S + u2St+h (19)

where h = 0, 1, ..., 48.19 This is an analog to equation (10). We compare this to the one-step LP:

ln(CPIt+h)− ln(CPIt−1) = αh
0 + x′

1,tθ
h
1 + x′

2,tθ
h
2 +∆itβ

h
1S + u1St+h (20)

an analog to equation (12), as well as a hybrid regression, in which the estimated shocks are

used alongside all controls:

ln(CPIt+h)− ln(CPIt−1) = αh
0 + x′

1,tϕ
h
1 + x′

2,tϕ
h
2 + ε̂mp

t βh
Hyb + uHyb

t+h (21)

where this is the analog to equation (14).

As in our theoretical exposition, we consider two cases: Case 1, in which the second-stage

controls x2,t are empty such that K2 = 0; and Case 2, where x2,t is non-empty (i.e. K2 >

0). In the latter, x2,t contains one-month lags of month-on-month changes in (log) industrial

production, (log) CPI and the unemployment rate.

18Unlike Romer and Romer (2004), who estimate a distributed-lag model in their second stage, we utilise the LP
methodology of Jordà (2005) to estimate direct forecasts of US CPI across different horizons.

19Strictly, to ensure that the one-step regression is estimated using the same control data, we use outcome data
from 1972:01-2011:12 to estimate the forward lags of this regression.
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Table 1: Response of ln(CPI) to US monetary policy shock across horizons h from LP-OLS

Case 1: x2,t empty Case 2: x2,t non-empty
(1) (2) (3) (4) (5) (6)

Two-Step One-Step Hybrid Two-Step One-Step Hybrid
h = 0 0.03 0.03 0.03 0.06 0.04 0.04

OLS s.e. (0.05) (0.04) (0.04) (0.04) (0.03) (0.03)
N-W s.e. (0.06) (0.02) (0.02) (0.03) (0.02) (0.02)
Rob. s.e. (0.09) (0.03) (0.03) (0.04) (0.03) (0.03)

h = 12 0.13 0.13 0.13 0.46 0.13 0.13
OLS s.e. (0.50) (0.22) (0.22) (0.38) (0.22) (0.22)
N-W s.e. (0.66) (0.21) (0.21) (0.32) (0.21) (0.21)
Rob. s.e. (0.78) (0.20) (0.20) (0.32) (0.19) (0.19)

h = 24 -0.15 -0.15 -0.15 0.37 -0.11 -0.11
OLS s.e. (0.90) (0.41) (0.41) (0.74) (0.41) (0.41)
N-W s.e. (0.93) (0.44) (0.44) (0.57) (0.44) (0.44)
Rob. s.e. (1.02) (0.39) (0.39) (0.52) (0.39) (0.39)

h = 36 -1.20 -1.20** -1.20** -0.52 -1.13** -1.13**
OLS s.e. (1.26) (0.53) (0.53) (1.07) (0.53) (0.53)
N-W s.e. (1.20) (0.67) (0.67) (0.97) (0.65) (0.65)
Rob. s.e. (1.04) (0.55) (0.55) (0.90) (0.54) (0.54)

h = 48 -2.46 -2.46*** -2.46*** -1.66 -2.38*** -2.38***
OLS s.e. (1.57) (0.62) (0.62) (1.36) (0.63) (0.63)
N-W s.e. (1.67) (0.93) (0.93) (1.49) (0.91) (0.91)
Rob. s.e. (1.25) (0.74) (0.74) (1.36) (0.74) (0.74)

Notes: Estimated response of US ln(CPI) to US monetary policy shock using Romer and Romer (2004)
identification assumptions. Estimated using monthly data for the period 1972:01-2007:12. OLS, Newey and
West (1987) and robust standard errors in parentheses. ∗∗∗, ∗∗ and ∗ denote significance at 1, 5 and 10% levels
using Newey and West (1987) standard errors, respectively.

Table 1 presents the results, which support our main findings from Section 4.1. Focusing

on Case 1, where x2,t is empty, columns (1)-(3) present βi estimates for i = {2S, 1S,Hyb} and

h = 0, 12, 24, 36, 48.20 Here, point estimates from the one- and two-step estimators are identical,

per Corollary 1. They, unsurprisingly, indicate that a US monetary-policy shock is associated

with negative lagged effects on US CPI. Comparing columns (2) and (3) further illustrates that

both the point estimates and standard-error estimates from the one-step and hybrid estimators

are identical in sample, a result stated in Proposition 1.

However, as Corollary 2 states, estimated standard errors from the one- and two-step es-

timators differ. In all cases, as columns (1) and (2) show, OLS standard errors, calculated

assuming homoskedasticity, are smaller for the one-step estimates relative to the two-step.

This carries over to other standard errors too, including White (1980) heteroskedasticity-robust

standard errors and Newey and West (1987) standard errors—which are robust to serial cor-

relation. Because the naı̈ve two-step standard errors are over-estimated, they imply that the

dynamic effects of US monetary policy on US CPI are insignificant, even after four years. In

contrast, the one-step estimates are significant at the 5%, at least, at the four-year horizon.

For Case 2, where x2,t is non-empty and the conditions for Corollary 3 are not met, columns

20These impulse response functions are also presented in Figures 1a and 1b
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(4) and (5) demonstrate that coefficient estimates from the one- and two-step approaches do,

in general, differ, confirming Result 1.21 In this application, the one-step coefficient estimates

suggest a limited near-term price puzzle, relative to the two-step estimates—which indicate

that a US monetary tightening is, counterintuitively, associated with a marginally significant

increase in prices in the near term. Further out, the lagged effects of monetary policy are only

significantly negative using the one-step (and hybrid) approach.

While comparing columns (1) and (4) demonstrates that adding second-stage controls does

generally reduce naı̈ve standard-error estimates from the two-step procedure, standard errors

in column (4) remain greater than those from the one-step approach in column (5). This demon-

strates how the implications of Corollary 2 carry over to the case with non-empty x2,t.

Internal Instruments in a Recursive SVAR. Next, we estimate the effects of Romer and

Romer (2004) shocks when used as ‘internal instruments’ in a VAR (Plagborg-Møller and Wolf,

2021). Here, the two-step approach uses the shocks directly in a recursive SVAR, with the shock

ordered first such that shocks to subsequent variables do not impact it contemporaneously.22

Our application uses the VAR specification of Coibion (2012). For the two-step approach,

we estimate a VAR(12) with (in order): estimated Romer-Romer shock ε̂mp
t , Federal Funds

target rate (it), and macroeconomic variables (specifically, consumer prices, industrial produc-

tion, unemployment and commodity prices). We compare this to a one-step approach where

the VAR(12) includes the Greenbook variables in x1,t as additional endogenous variables.23

We use the new target rate (it) as our interest-rate variable, and use the same macroeconomic

variables as the two step. For identification, we place the Federal Funds target rate after the

Greenbook forecasts, but before the macroeconomic variables—aligning with the temporal or-

dering in the two step, as well as that implied by our selection of controls in the LP-OLS

application.24

In Appendix C, we analytically demonstrate how our OVB result carries over to this case.

Intuitively, bias can arise in the two-step ‘internal instruments’ approach since the monetary-

policy shock in the VAR is constructed by further orthogonalising εmp
t with respect to lags of

the macroeconomic variables, which may in turn be correlated with the Greenbook forecasts

used in the first stage. The one step avoids this issue since the shock estimated in the VAR is

21Again, consistent with Proposition 1, the point estimates and standard-error estimates from one-step and hy-
brid approaches are identical.

22Note that Romer and Romer (2004) order their shock last in their VAR when estimating the effects on macro
variables. This implies the restriction that monetary policy only affects macro variables with lag, which does not
have a solid theoretical basis. We avoid making this assumption throughout.

23To avoid including the same variable in both levels and first differences in the VAR, we include only the Green-
book forecasts for that month (not the forecast revisions).

24As in the LP-OLS application, we are interested in estimating the effect of monetary policy after partialling-out
the contemporaneous Greenbook forecasts and lagged macroeconomic controls. The ordering of variables in the
VAR here aligns with the actual temporal ordering of monetary policymaking whereby the Fed’s policy decision is
made after seeing the Greenbook forecasts (which are produced prior to the FOMC meeting), but before seeing the
(end-of-month) readings for each of the macroeconomic variables.
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Figure 2: Estimated impulse responses to US monetary policy shock from recursive SVAR
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Notes: Estimated response of key US variables to US monetary policy shock, normalised as 1p.p. increase in Fed-
eral Funds target rate from one- and two-step recursive SVARs described in main text. Shaded area denotes 68%
confidence bands constructed from wild bootstrap. Sample: 1972:01-2007:12

by construction orthogonal to the Greenbook forecasts.

Figure 2 presents the estimated impulse responses from the one- and two-step recursive

VARs. As in the LP-OLS application, one-step estimates again suggest that US monetary pol-

icy has significant (dis)inflationary consequences. The two-step VAR points to a pronounced

prize puzzle in the near term, with no significant fall in prices at any subsequent quarter. In

contrast, the one-step VAR exhibits a much milder near-term price puzzle, with prices falling

significantly in the medium term. Furthermore, the impulse responses for industrial produc-

tion and unemployment indicate that the two-step estimates also present a more pronounced

‘activity puzzle’ in the near term (i.e., a significant fall in unemployment and rise in industrial

production in response to a monetary tightening), unlike the one-step estimates.

These OLS-based applications highlight how appropriately controlling for Greenbook fore-

casts can yield estimates of monetary policy’s causal effects that are more robust than previ-

ously realised. Unlike recent studies that find puzzling results when using the Romer and

Romer (2004) shock in both LPs and VARs (Ramey, 2016; Nakamura and Steinsson, 2018a),
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we find that the response of consumer prices is consistently negative and significant in the

medium term—with only a mild near-term ‘price puzzle’—when controlling directly for Green-

book forecasts. Crucially, we find these results without resorting to a ‘recursiveness assump-

tion’ which rules out contemporaneous effects of the monetary shock on macroeconomic vari-

ables. In this sense, the implications of our results are very different to Ramey (2016) who

finds that “relaxing the recursiveness assumption imposed by Romer and Romer’s hybrid VAR leads to

several puzzles” (p. 111) such that “even with the Romer and Romer shock, one is forced to make the re-

cursiveness assumption, which does not have a solid economic basis” (p. 107). They also differ from

Cochrane (2004), who employs the Romer and Romer (2004) shocks in a LP and concludes

that they provide only very weak evidence for the effects of monetary policy on the basis

the response of prices are barely significant. Instead, our results highlight that appropriately

controlling for the Greenbook forecasts in a one-step procedure need not result in puzzling

findings and can deliver highly significant estimated coefficients at medium-term horizons.

5.2 Instrumental Variables

As we outlined in Section 4.2, our theoretical results for OLS also carry over to settings in

which orthogonalised shocks are used as instruments. We demonstrate this here, considering

estimation by both LPs, as well as VARs with external instruments (or ‘Proxy SVARs’).

Local Projections (LP-IV). To demonstrate the implications of our IV results, we employ the

Romer and Romer (2004) shock within a LP-IV setting. The two-step approach involves using

the shock as an instrument for a monetary-policy indicator, and we compare this to a one-step

approach where the Greenbook forecasts are used as controls with the change in the Federal

Funds target rate as the instrument. Since this yields similar results to those we described

using LP-OLS in the previous sub-section, we defer a discussion of these empirical results to

Appendix E, in particular Figure E1.

The more substantive practical implications of our IV results relate to instrument strength.

To demonstrate these in the context of US monetary policy, we consider an application that

builds on the specification of Miranda-Agrippino and Ricco (2021)—which itself develops that

in Romer and Romer (2004). Here, our two-step estimation proceeds as follows. In stage one,

we take high-frequency monetary policy surprises—specifically the move in the third-month-

ahead Federal funds futures rate in a 30-minute window around monetary policy announce-

ments, as constructed by Gürkaynak et al. (2005)—at monthly frequency, using the series con-

structed by Gertler and Karadi (2015). We regress these surprises rt := mpsurpt on Greenbook

forecasts and forecast revisions x1,t and label the residual from this regression ε̂FF4
t . We then

use this orthogonalised residual as an instrument for our monetary-policy indicator mt in an
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IV regression of the form:

ln(CPIt+h)− ln(CPIt−1) = αh
0 +mtβ

IV,h
2S + u2St+h,IV (22)

to estimate the dynamic effects of US monetary policy on US CPI. This is an analog to equation

(16). We compare this to a one-step LP-IV regression:

ln(CPIt+h)− ln(CPIt−1) = αh
0 + x′

1,tθ
h
1mtβ

IV,h
1S + u1St+h,IV (23)

in which the surprise mpsurpt instruments for mt to make this the analog to equation (17).

Throughout, we use the 1-year Treasury yield as our policy indicator mt and, due to the avail-

ability of high-frequency surprises, start our sample in 1990:01—but still end it in 2007:12.

We report the impulse responses of consumer prices from this specification in Figure E2 of

Appendix E. We find coefficient estimates from the one- and two-step approaches to be very

similar, even when including auxiliary controls. The similarity in coefficients between the one-

and two-step follows from the fact the Miranda-Agrippino and Ricco (2021) shock has a very

low correlation with the lagged macroeconomic variables we employ as auxiliary controls. The

standard errors are wider for the two-step approach than the one step, although responses are

generally insignificant for both, consistent with Miranda-Agrippino and Ricco (2021).

However, the differences between first-stage F -statistics from the one- and two-step ap-

proaches, shown in Panel A of Table 2, can be substantive. In the two cases, with and without

auxiliary controls, we find first-stage F -statistics in this application to be around twice as large

using the one-step approach relative to the two step (around 20 vs. around 10 for the two

step). Panel B of Table 2 also presents the first-stage F -statistics that arise from one- and two-

step applications of the Proxy SVAR to the Miranda-Agrippino and Ricco (2021) setting (which

we discuss in more detail in the following sub-section). Here, the difference between one- and

two-step results is striking: with the two step, the first-stage F -statistic lies below 10, while the

one-step approach yields an F -statistic above that common threshold.

Given the challenge of weak instruments and lack of power in the literature using high-

frequency monetary surprises to identify the causal effects (see e.g., Nakamura and Steinsson,

2018a), this finding has particular importance. ‘Best practice’ for identification in that literature

typically involves orthogonalising high-frequency surprises with respect to various macroeco-

nomic and financial data and then employing them in LP or VAR specifications (see e.g., Bauer

and Swanson, 2022). However, doing so in a two-step approach implies that tests of instrument

strength and coefficient significance will be unnecessarily conservative.

External Instruments SVAR. We also demonstrate that our results in Section 4.2 have im-

plications for estimation via Proxy SVARs. As we show formally in Appendix D, using an

orthogonalised shock as an external instrument in a SVAR can be viewed as a special case of
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Table 2: First-stage F -statistics from one- and two-step IV applications

Two-Step One-Step
A: LP-IV
Case 1: No Auxiliary Controls 11.756 19.571
Case 2: With Auxiliary Controls 11.266 19.578
B: External Instruments SVAR

7.784 11.358

Notes: First-stage F -statistics from applications where high-frequency monetary-policy surprises are orthogo-
nalised with respect to Greenbook forecasts, à la Miranda-Agrippino and Ricco (2021) using one- and two-step
approaches. Panel A reports results from LP-IV applications, equations (22) and (23), with and without auxiliary
controls (lagged month-on-month change in (log) industrial production, (log) CPI and unemployment rate. Panel
B reports results from structural VAR identified with external instrument. Sample: 1990:01-2007:12.

what we describe as a two-step IV regression with auxiliary controls, and so can generate a

form of OVB. We propose an alternate ‘one-step’ Proxy-SVAR procedure and derive an exact

analytical expression for the OVB in the impulse responses from the two-step approach.

For our main application, we employ the Romer and Romer (2004) shocks as external in-

struments in a VAR(12) with a macro-variable set that includes the 1-year Treasury yield, (log)

industrial production, (log) CPI, the unemployment rate and (log) commodity prices for the

period 1972:01-2007:12. The two-step approach instruments the 1-year Treasury yield for the

Romer and Romer (2004) shock when estimating contemporaneous responses to changes in

monetary policy, then using the reduced-form VAR coefficients to back-out the entire impulse

response. In contrast, the one-step approach uses the change in the Federal Funds target rate

as an instrument and includes Greenbook forecasts and revisions directly as controls when

estimating contemporaneous responses, and then (as in the two-step approach) constructs im-

pulse responses by combining these estimates with the reduced-form VAR coefficients.

Appendix E, Figure E3 presents impulse responses for the 1-year yield and CPI from the

one- and two-step Proxy SVARs. The two-step approach shows a large and significant rise

in prices in response to a monetary-policy shock. Unlike with previous estimates, the one-

step approach does very little to offset this price puzzle. Note that the one-step procedure

only differs from the two-step procedure in the estimation of the contemporaneous response.

Hence both estimates rely on an invertibility assumption necessary for identification in Proxy

SVARs in order to construct impulse responses. Stock and Watson (2018) propose comparing

Proxy-SVAR and LP-IV estimators as a direct test of VAR-invertibility, implying that the sharp

contrast in impulse responses from our LP-IV and Proxy-SVAR applications strongly suggests

that invertibility fails in this setting.
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5.3 Quantile Regression

Finally, we study the dynamic response of conditional quantiles of US CPI to US monetary

shocks. We estimate QR analogs to equations (19) and (20), again employing ε̂mp
t as our shock

measure. The two-step approach involves estimating the following second-stage LP-QR :

ln(CPIt+h)− ln(CPIt−1) = αh
0(τ) + ε̂mp

t βh
2S(τ) + u2St+h(τ) (24)

and the one step is:

ln(CPIt+h)− ln(CPIt−1) = αh
0(τ) + x′

1,tθ
h
1 (τ) + ∆itβ

h
1S(τ) + u1St+h(τ) (25)

As discussed in Section 4.3, OVB can arise in the two step, even under C1, so we restrict

our attention to this case here. Table 3 presents the estimated response of conditional quantiles

of US CPI to US monetary policy across horizons from the one- and two-step approaches, with

Figure 1d in the Introduction visualising the results for the 4-year horizon. The table illustrates

the key insights from Result 2 and Corollary 5—especially the differences in point estimates

from the two estimation approaches.

While the one-step estimates indicate that a US monetary tightening is associated with a

reduction in 3- and 4-year-ahead US CPI across all quantiles, the two-step estimates differ in

their implications. The two-step estimates indicate that a US monetary tightening is associated

with a more marked (and significant) reduction in the right-tail of future inflation. On the

other hand, one-step estimates—which remove the OVB term—are more similar across other

quantiles. In essence, the one-step point estimates imply that tighter US monetary policy shifts

the distribution of CPI outturns to the left in a parallel fashion, while the two-step estimates

mistakenly imply uneven effects of monetary policy across the inflation distribution.

These findings provide novel evidence on the effects of monetary policy across quantiles

of the inflation distribution. Understanding the effects of monetary policy across the entire

distribution of macroeconomic variables (i.e, not just at the mean) is important for effective

policymaking—a point made forcibly by Greenspan (2004).25 A two-step approach mistakenly

implies monetary policy is particularly potent at addressing upside tail risks to inflation in the

medium-term, while a one-step approach shows it acts more as a location-shifter of the entire

distribution. The one-step approach we advocate for here can be applied to assess the effects

of other policies on the distribution of various outcomes—as in, e.g., Fernández-Gallardo et al.

(2023) who estimate the effects of macroprudential policies on the GDP-growth distribution.

25Greenspan (2004) writes: “the conduct of monetary policy in the United States has come to involve, at its core, crucial
elements of risk management [... such that] a central bank needs to consider not only the most likely future path for the
economy but also the distribution of possible outcomes about that path. The decision makers then need to reach a judgment
about the probabilities, costs, and benefits of the various possible outcomes under alternative choices for policy.”
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Table 3: Response of ln(CPI) quantiles τ to US monetary-policy shock across horizons h

Two-Step One-Step
(1) (2) (3) (4) (5) (6)

τ = 0.05 τ = 0.5 τ = 0.95 τ = 0.05 τ = 0.5 τ = 0.95
h = 0 0.00 -0.00 0.02 -0.03 0.03 0.10

(0.14) (0.12) (0.04) (0.06) (0.03) (0.10)
h = 12 0.49 -0.36 0.05 1.11*** -0.02 -0.57

(0.99) (0.87) (0.38) (0.36) (0.17) (0.37)
h = 24 0.69 -0.26 1.68*** 0.59 -0.11 -1.19***

(0.92) (1.70) (0.31) (0.55) (0.88) (0.44)
h = 36 0.64 0.03 -6.67*** -1.37 -0.59 -0.86

(1.02) (2.65) (0.66) (1.08) (0.69) (0.66)
h = 48 0.03 -0.86 -8.59*** -2.02* -2.35* -2.69***

(1.08) (3.74) (0.52) (1.03) (1.28) (0.86)

Notes: Estimated response of conditional quantiles τ across horizons h US ln(CPI) to US monetary policy shock
using two-step shock-identification strategy, as well as alternative one-step QR estimator. Estimated using monthly
data for the period 1972:01-2007:12. ∗∗∗, ∗∗ and ∗ denote significance at 1, 5 and 10% levels using bootstrapped
standard errors, respectively.

6 Conclusions

A common approach to estimating dynamic causal effects in macroeconomics involves es-

timating the ‘shocks first’: orthogonalising causal variables of interest with respect to con-

founders; then, using the orthogonalised variables in a second-stage LP or VAR. As we have

explained, this approach subsumes multiple identification approaches and has been applied

in a wide range of settings. An alternate one-step approach involves simply including con-

founders as control variables in a regression for the outcome variable.

We have shown, for a wide set of estimators, that the two-step ‘shock-first’ approach can

be problematic for both identification and inference relative to the one-step method. In simple

OLS settings, the two approaches yield identical coefficients, but two-step inference is unnec-

essarily conservative. More generally, one- and two-step estimates can differ due to OVB in

the latter when additional controls are included in the second stage (e.g., VARs with internal

or external instruments) or when employing non-OLS estimators (e.g., QR).

In practice, this bias can be substantive. One-step LPs and VARs remove a significant por-

tion of the near-term price puzzle identified in previous studies analysing the response of

prices to monetary shocks. Our one-step results do not rely on ‘recursiveness assumptions’

to resolve the price puzzle, and yield estimated impulse responses that are highly significant

at medium-term horizons. Moreover, we provide new evidence that monetary policy acts as

a ”location shifter” of the entire inflation distribution, a result that was missed when imple-

menting a two-step procedure. Together, our applications indicate that the (dis)inflationary

consequences of monetary policy are more robust than previously realised.
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Appendix

A Identification With Controls
A.1 Structural Moving-Average Model

First, we prove that Condition 1 in the structural moving-average model from Section 2.1 is

sufficient for estimation of impulse responses using a one-step regression.

The OLS estimand from the ’one-step’ regression (5) is:

βh
1S =

E
[
y⊥xt
t+h r

⊥xt
t

]
E
[
r⊥xt
t r⊥xt

t

]
The numerator can be written as:

E
[
y⊥xt
t+h r

⊥xt
t

]
= E

[
(Θh,21ϵ

⊥xt
1,t + u⊥xt

t+h )r
⊥xt
t

]
= Θh,21 E

[
ϵ⊥xt
1,t r⊥xt

t

]
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where the first line substitutes in expression (3) and the second line uses exogeneity con-

ditions (and uses that ut+h contains all other past, contemporaneous and future shocks that

affect yt+h). The denominator can then be written as:

E
[
r⊥xt
t r⊥xt

t

]
= E

[
(Θ01ϵ

⊥xt
t +Θ11ϵ

⊥xt
t−1 + ...)r⊥xt

t

]
= Θ0,11 E

[
ϵ⊥xt
1,t r⊥xt

t

]
= E

[
ϵ⊥xt
1,t r⊥xt

t

]
where the second line uses the exogeneity conditions and final line follows from the unit

shock normalisation. From here we have: βh
1S = Θh,21.

A.2 Potential-Outcomes Framework

We prove that Condition 2 from Section 2.3 is sufficient for estimation of dynamic causal effects

using a one-step regression.

Observed outcomes yt+h relate to potential outcomes yt,h(r)via:

yt+h =
∑
r∈R

yt,h(r)1[rt = r]

Using this relation plus Condition 2, we can then write the causal effect of interest condi-

tional on rt and xt as the difference in observable conditional means:

E [yt,h(1)− yt,h(0)|rt,xt] = E [yt+h|rt = 1,xt]− E [yt+h|rt = 0,xt]

Then when the conditional expectation function is linear, recognise that the right hand-

side is exactly the regression coefficient on rt from the one-step OLS regression (5). Finally the

unconditional average causal effect is simply recovered by the law of iterated expectations:

E [yt,h(1)− yt,h(0)] = E [E [yt,h(1)− yt,h(0)|rt,xt]]

= E
[
βh
1S

]
= βh

1S

We proceed similarly for quantile regression. We can write the causal effect of rt on condi-

tional quantiles of yt+h as the difference in observable conditional quantiles:

Qτ (yt,h(1)|xt, rt)−Qτ (yt,h(0)|xt, rt) = Qτ [yt+h|rt = 1,xt]−Qτ [yt+h|rt = 0,xt]

where we have used Condition 2 and the relation between potential and observed outcomes.

Then again when the conditional quantile function is linear the right-hand side is simply the

coefficient on rt from the one-step quantile regression (8), giving the desired result:

Qτ (yt,h(1)|xt, rt)−Qτ (yt,h(0)|xt, rt) = βh
1S(τ)

Note that, unlike for OLS, the causal effect on unconditional quantiles is not recoverable through

the law of iterated expectations.
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B Additional Results on Standard Errors
B.1 Alternative Standard Errors for OLS

First, we discuss extensions of Corollary 2 to other standard-error formulas. We focus on Case 1

(where x2,t is empty), with all coefficients estimated via OLS. Throughout, we use expressions

for standard-error formulas for a single variable in a multivariate regression from Ding (2021).

Heteroskedastic-Robust Standard Errors. The estimated standard errors for the one- and

two-step estimates β̂1S and β̂2S using White (1980) robust standard-error formulas are:

V̂ar(β̂1S) =(ε̂′tε̂t)
−1ε̂′tΣ̂1S ε̂t(ε̂

′
tε̂t)

−1 (B1)

V̂ar(β̂2S) =(ε̂′tε̂t)
−1ε̂′tΣ̂2S ε̂t(ε̂

′
tε̂t)

−1 (B2)

where ε̂t = [ε̂1, ..., ε̂T ], Σ̂1S = diag((û1S
t )2), Σ̂2S = diag((û2S

t )2), and ûi
t = [ûi1, ..., û

i
T ]

′ for i =

1S, 2S. The difference between the estimated variances can then be expressed in the following

quadratic form:

V̂ar(β̂2S)− V̂ar(β̂1S) = aΣ̂a′

where a = (ε̂′tε̂t)
−1ε̂′t and Σ̂ = diag((û2S

t )2 − (û1S
t )2). This difference is weakly positive if

and only if the diagonal matrix Σ̂ is positive semi-definite, which requires all elements on the

diagonal to be weakly positive, i.e., (û2St )2 ≫ (û1St )2.

While the residual variance is higher for the two-step than the one-step regression by con-

struction (as stated in Corollary 2), this does not imply that each diagonal element in Σ̂ is

positive. However, since (û1St )2 is on average larger than (û1St )2 by construction—and much

larger when x1,t explains significant variance in yt—it seems reasonable that in most applica-

tions V̂ar(β̂2S) will indeed be larger than V̂ar(β̂1S).

Heteroskedastic-and-Autocorrelation-Robust Standard Errors. Estimated standard errors

for the one- and two-step coefficients β̂1S and β̂2S using Newey and West (1987) autocorrelation-

robust standard-error formulas are the same as equations (B1) and (B2), but with the following

form for Σ̂1S and Σ̂2S :

Σ̂1S = (ŵ1S
|i−j|(û

1S
i )(û1S

j ))1≤i,j≤n

Σ̂2S = (ŵ2S
|i−j|(û

2S
i )(û2S

j ))1≤i,j≤n

Like the case above, there is nothing inherent in OLS mechanics to guarantee that the difference

between these matrices is positive semi-definite. But the fact that (û1St )2 is on average larger

than (û1St )2 by construction will generally tend to inflate standard errors for the two-step vs.

the one-step approach.
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B.2 IV Standard Errors

Here, we prove the final result of Corollary 4 around standard-error formulas for the one- and

two-step approach in IV settings. Specifically, we show the following for estimated standard

errors for βIV
1S and βIV

2S defined in equations (16) and (17):

V̂ar(β̂IV
2S ) ≥ V̂ar(β̂IV

1S ) (B3)

Estimated variances for β̂IV
1S and β̂IV

2S have the following form under homoskedasticity (see,

e.g., Angrist and Pischke, 2014, pp. 140):

V̂ar(β̂IV
2S ) = σ̂2

2S/Var(m̂2S
t ) and V̂ar(β̂IV

1S ) = σ̂2
1S/Var((m̂1S

t )⊥x1,t)

where σ̂2
2S and σ̂2

1S are defined as:

σ̂2
2S = Var(y⊥mt

t ) and σ̂2
1S = Var(y⊥[mt,x1,t]

t )

and m̂2S
t and m̂1S

t are defined as the fitted values from the following OLS regressions:

m̂2S
t = ε̂tβ̂2S and m̂1S

t = rtβ̂1S + x′
1,tδ̂1

As in Corollary 2, adding covariates to OLS regressions reduces the variance of the error

term and so: σ̂2
2S ≥ σ̂2

1S .

Finally,Var((m̂1S
t )⊥x1,t) = Var(m̂2S

t ) which ensures the inequality (B3) holds:

(m̂1S
t )⊥x1,t = (β̂1Srt + δ̂1x1,t)

⊥x1,t = (β̂1Srt)
⊥x1,t

= β̂1S ε̂t = m̂2S
t

where line 1 substitutes in definitions, line 2 follows from standard OLS-algebra, line 3 substi-

tutes in definitions and line 4 follows from Frisch-Waugh-Lovell Theorem.

C Internal Instruments in Structural VARs

Here, we analytically demonstrate how our results for estimation in an OLS setting carry over

to SVAR settings in which identification is achieved by using orthogonalised shocks as ‘inter-

nal instruments’ (Plagborg-Møller and Wolf, 2021) in a recursive SVAR. We derive exact ex-

pressions linking estimates of contemporaneous responses from a two-step internal-instrument

approach to a one-step approach that includes confounders directly in a recursive SVAR.

Recursive-SVAR Setting. Let εt be the OLS-population residual from a regression of rt on

x1,t. We also define a vector of outcomes yt = [y1,t, ..., yn,t]
′ which feature in the VAR.

Consider the estimation of impulse responses using εt as an internal instrument. The es-

timated contemporaneous response of the variable yi,t ∈ yt to εt is given by the following
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(population) OLS regression for i = 1, ..., n:

yi,t = εtβ2S +

p∑
j=1

Γ2S
j yt−j +

p∑
j=1

π2S
j εt−j︸ ︷︷ ︸

=x′
2,tα

+u2St (C1)

Next, consider a hybrid (OLS) regression for contemporaneous responses defined as:

yi,t = εtβHyb +

p∑
j=0

Φjx
′
1,t−j +

p∑
j=1

ΓHyb
j yt−j +

p∑
j=1

πHyb
j εt−j︸ ︷︷ ︸

=x′
2,tϕ2

+uHyb
t (C2)

where, as before, the hybrid regression includes additional covariates relative to the two step

and so βHyb and β2S are related via an OLS-OVB formula.

It is then straightforward to show that βHyb is equivalent to β1S from a ‘one-step’ regression

that avoids the first-stage construction of εt:

yi,t = rtβ1S +

p∑
j=0

Θjx
′
1,t−j +

p∑
j=1

Γ1S
j yt−j +

p∑
j=1

π1S
j rt−j + u1st (C3)

since controlling for rt−j and x′
1,t−j is equivalent to controlling for εt−j and x′

1,t−j , by the same

logic that underpins Proposition 1. Note that this one-step regression is equivalent to estimat-

ing the contemporaneous responses of yi,t to rt in a standard recursive SVAR with rt ordered

after x1,t and before yt .

Recursive-SVAR Results. Defining xp
1,t as the vector [x′

1,t,x
′
1,t−1, ...,x

′
1,t−p], we have the fol-

lowing relationship between β2S from regression (C1) and β1S from regression (C3):

β2S = β1S +ΩSV AR

= β1S +E [εtx2,t]B
−1E

[
x2,tx

p
1,t

]
Φp

where the B-matrix is defined analogously to Result 1, and Φp collects the vector of coefficients

[Φ1,Φ2, ...,Φp] from regression (C2). The OVB term now captures the omission of contempo-

raneous and lagged x′
1,t from the two-step approach.

D External Instruments in Structural VARs

Here, we demonstrate how our results for IV estimation carry over to SVAR settings where

identification is achieved through external instruments (i.e., SVAR-IV / Proxy-SVAR). We demon-

strate analytically how a ‘one-step’ procedure can be implemented as an alternative to the

common ‘two-step’ procedure that first constructs orthogonalised shocks and then using these

shocks as instruments in an SVAR-IV. We also derive exact expressions for the OVB for impulse

responses estimated from the two-step approach relative to our proposed one-step approach.
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SVAR-IV Setting. We are interested in estimating the effect of mt on a n×1 vector of variables

yt and propose doing so using SVAR-IV. We define wt = [mt,y
′
t]
′. The two-step approach

involves using εt—defined as in Section 4.2, as the OLS-population residual from a regression

of rt on x1,t—as an external instrument for mt.

Following Stock and Watson (2018) (p. 932), SVAR-IV coefficients for this two-step ap-

proach can be defined as follows. First the (population) contemporaneous coefficients are de-

fined via the following IV-regression for each variable wi,t ∈ wt, where i = 1, ..., n, n+ 1:

wi,t = mtβ
2S
0,i1 +

p∑
j=1

w′
t−jαj︸ ︷︷ ︸

≡x′
2,tα

+u2St (D1)

with εt as an instrument for mt. It is immediately obvious that equation (D1) is just a special

case of equation (16), setting x2,t as the p vectors of lagged controls wt−j .

The (population) impulse response of the vector wt to a shock to mt at horizon h is then:

Φ2S
h,1 = Chβ

2S
0,1 (D2)

where β2S
0,1 is a [(n+ 1)× 1] vector collecting each β0,i1 and Ch is a horizon-specific coefficient

matrix formed by inverting the (population) reduced form-VAR:

A(L)wt = ηt (D3)

where A(L) = I −A1L–A2L
2 − ... and L is the lag operator.

Following the logic of Section 4.2, the contemporaneous responses of each variable could

instead be recovered via a one-step IV (population) regression with x1,t as controls:

wi,t = mtβ
1S
0,i1 + x′

1,tθ1 +

p∑
j=1

w′
t−jθj︸ ︷︷ ︸

≡x′
2,tθ2

+u1St (D4)

with rt as an instrument for mt. Again, this is just a special case of equation (17) setting x2,t as

the p vectors of lagged controls [wt−1, ...,wt−p].

In this case, the entire impulse response can then be constructed as before using the same

reduced-form VAR coefficients as equation (D2) to project-out across horizons:

Φ1S
h,1 = Chβ

1S
0,1 (D5)

SVAR-IV Results. Comparing equations (D5) and (D2), impulse responses from a one- and

two-step approach differ only in their construction of the contemporaneous coefficients β0,1.

As in Section 4.2, our OVB result applies directly, and it is then straightforward to derive an

exact expression for the OVB of the entire two-step impulse response:

Φ2S
h,1 = Φ1S

h,1 +ΩSV AR−IV
h = Φ1S

h,1 +Ch
ΩOLS

w

ΩOLS
m
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where ΩOLS
w and ΩOLS

m are [(n+ 1)× 1] and scalar OLS-OVB formulas respectively, relating to

regressions with the stacked vector wt and the scalar mt as the dependent variables. Specifi-

cally, the OVB formulas in this case take the following form:

ΩOLS
wi

= E [εtx2,t]B
−1
wi
E
[
x2,tx

′
1,t

]
ϕwi and ΩOLS

m = E [εtx2,t]B
−1
m E

[
x2,tx

′
1,t

]
ϕm

where ΩOLS
wi

is the i-th element of ΩOLS
w , and B-matrices and ϕ-coefficients are defined

analogously to Result 1. Intuitively, this bias can be thought of as a potential failure of exogene-

ity conditions necessary for identification in an IV setting, which arises when the instrument

εt is in fact correlated with other variables (i.e., lags of wt) that affect the outcome variable.

Although these variables are included as controls in equation (D1), this serves to reintroduce

correlation with x1,t, thereby leading to a potential failure of exogeneity. As before, the one-

step approach automatically avoids this bias and so can be thought of as more robust.

Note, the one-step SVAR-IV approach we discuss here is distinct from simply including

x1,t as exogenous variables in an SVAR-IV since, in our case, x1,t are included only to estimate

contemporaneous coefficients and do not feature in the estimation of subsequent impulse re-

sponses. While the two-step approach will continue to over-state first-stage F -statistics (typi-

cally computed using standard OLS formulas), standard errors for SVAR-IV are typically com-

puted using a bootstrap procedure—where it is less clear whether such a procedure would

produce wider confidence bands for the one-step or two-step approach.

E Empirical Application: Additional Results

E.1 Data Sources

We use monthly data. Our dependent variable, the US Consumer Price Index (CPI), is sourced

from FRED, and we use additional macroeconomic controls in x2,t—seasonally-adjusted US

industrial production and the US unemployment rate—from the same source. To estimate

Romer and Romer (2004) policy shocks, we use Federal Reserve Greenbook forecasts and fore-

cast revisions. We draw on Wieland and Yang (2020) for this, who provide updated Greenbook

forecast data up to, and beyond, the end of our sample period, 2007:12.

E.2 Monetary-Policy Shock Construction

To construct the Romer and Romer (2004) shocks, we make two changes relative to the original

work. First, and most notably, we estimate the model for a different sample period—1972:01-

2007:12, rather than 1969:01-1994:12. We start the sample a little later to avoid calendar months

in which there was more than one FOMC meeting. We end the sample later given data avail-

ability, stopping just before the effective lower bound was reached (using updated data from

Wieland and Yang, 2020). Second, rather than estimating the model at meeting frequency,

we estimate the shocks at monthly frequency. We do this to ensure direct comparability of the
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conditioning data in the one- and two-step approaches across all our LP and VAR applications.

As we go on to discuss, this frequency change constitutes a minimal difference for estimated

responses. Following Romer and Romer (2004), we construct the shock by estimating (18).

Column (1) of Table E1 presents the estimated coefficients from this regression.

Monthly vs. Meeting Frequency. As discussed, all regressions in the main body are esti-

mated at monthly frequency to foster comparability between LPs and VARs. To do so, for

months in which no FOMC announcements occurred, we set the Federal Funds target rate

change to zero, Greenbook forecasts equal to their last value, and forecast revisions to zero.

This change constitutes a minimal difference. To support this, Column (2) of Table E1

presents first-stage regression coefficients estimated at meeting frequency. They are similar to

monthly-frequency estimates in Column (1). In addition, the implied impulse responses are

very similar too. To show this, we re-estimate equations (19) and (20) using meeting-frequency

observations (but continuing to project the LP forward in monthly horizons). Table E2 demon-

strates how, for the various cases presented in Section 5.1, estimated impulse responses are

similar when estimated at monthly and meeting frequency.

E.3 Additional Results for IV Application

LP-IV Application with Romer-Romer Shocks. We estimate the Romer-Romer shock ε̂mp
t as

before, but we now use this shock as an instrument for the 1-year Treasury yield (which we

denote mt to align with Section 4.2). In the two step, we use ε̂mp
t as an instrument for mt in

regression (22) to estimate the dynamic effects of US monetary policy on US CPI. We compare

this to the one-step LP-IV regression (23), in which ∆it is used as an instrument for mt.

Figure E1 presents the estimated impulse responses from the one- and two-step. Unsurpris-

ingly, given the discussion in Section 4.2, the estimates for both approaches align closely with

those attained from LP-OLS—as a comparison of Figure E1 with Figures 1a and 1b reveals. As

before, unlike two-step estimate, the price puzzles in one-step estimates are limited.

LP-IV Application with Monetary Surprises. Figure E2 presents the estimated IRFs from

the Miranda-Agrippino and Ricco (2021) LP-IV application described in Section 5.2.

Proxy-SVAR Application with Romer-Romer Shocks. Figure E3 presents the estimated IRFs

from the Romer and Romer (2004) Proxy-SVAR application described in Section 5.2.
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Table E1: First-Stage Regressions: The Romer-Romer Reaction Function

DEP. VAR.: Change FFR Target
(1) (2)

Monthly Frequency Meeting Frequency
Old FFR Target -0.014 -0.018

(0.009) (0.013)
Output forecasts
k = −1 0.002 0.001

(0.008) (0.011)
k = 0 0.008 0.013

(0.013) (0.021)
k = 1 0.016 0.023

(0.020) (0.030)
k = 2 0.019 0.016

(0.023) (0.032)
Inflation forecasts

k = −1 0.016 0.032
(0.015) (0.023)

k = 0 -0.029 -0.043
(0.021) (0.031)

k = 1 0.019 0.028
(0.041) (0.066)

k = 2 0.030 0.026
(0.048) (0.078)

Unemployment forecasts

k = 0 -0.037*** -0.050***
(0.011) (0.014)

Output forecast revisions
k = −1 0.039 0.043

(0.026) (0.028)
k = 0 0.129*** 0.128***

(0.032) (0.034)
k = 1 0.032 0.017

(0.044) (0.044)
k = 2 0.011 0.014

(0.046) (0.049)
Inflation forecast revisions

k = −1 0.069 0.050
(0.045) (0.044)

k = 0 -0.007 -0.005
(0.055) (0.056)

k = 1 0.030 0.022
(0.090) (0.107)

k = 2 -0.054 -0.056
(0.087) (0.105)

R2 0.274 0.294
Observations 432 318
Notes: Estimated policy reaction functions. Column (1) estimated using monthly data for the period 1972:01-
2007:12. Column (2) estimated using meeting frequency data over the same period. Meeting-frequency
observations converted to monthly frequency by setting change in FFR target and forecast revisions to 0 and
forecasts equal to their previous-meeting value in months without FOMC meeting. Robust standard errors
in parentheses. ∗∗∗, ∗∗ and ∗ denote significance at 1, 5 and 10% levels, respectively.
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Table E2: Response of ln(CPI) to monthly- and meeting-frequency US monetary policy shocks
across horizons h estimated by LP-OLS

Case 1: x2,t empty Case 2: x2,t non-empty
Two-Step One-Step Two-Step One-Step

Frequency Monthly Meeting Monthly Meeting Monthly Meeting Monthly Meeting
h = 0 0.03 0.03 0.03 0.03 0.06 0.06 0.04 0.04

(0.05) (0.05) (0.04) (0.04) (0.04) (0.04) (0.03) (0.04)
h = 12 0.13 0.13 0.13 0.13 0.46 0.41 0.13 0.16

(0.50) (0.53) (0.22) (0.23) (0.38) (0.40) (0.22) (0.24)
h = 24 -0.15 -0.24 -0.15 -0.24 0.37 0.18 -0.11 -0.15

(0.90) (0.97) (0.41) (0.43) (0.74) (0.79) (0.41) (0.44)
h = 36 -1.20 -1.38 -1.20** -1.38** -0.52 -0.85 -1.13** -1.25**

(1.26) (1.37) (0.53) (0.55) (1.07) (1.16) (0.53) (0.56)
h = 48 -2.46 -2.72 -2.46*** -2.72*** -1.66 -2.10 -2.38*** -2.60***

(1.57) (1.72) (0.62) (0.63) (1.36) (1.49) (0.63) (0.64)
Notes: Estimated response of US ln(CPI) to US monetary policy shock using Romer and Romer (2004)
identification assumptions. Estimated using monthly- and meeting-frequency data for the period 1972:01-
2007:12. OLS standard errors presented here in parentheses. , and denote significance at 1, 5 and 10%
levels, respectively.

Figure E1: Estimated impulse responses of ln(CPI) to US monetary policy shock from LP-IV

(a) Case 1: No Auxiliary Controls
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(b) Case 2: With Auxiliary Controls
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Notes: Estimated IRF of US ln(CPI) to US monetary-policy shock that leads to 1p.p. increase in 1-year Treasury
yield, instrumented with Romer and Romer (2004) shock. Shaded area denotes 90% confidence bands constructed
from heteroskedasticity and autocorrelation robust standard errors. Sample: 1972:01-2007:12
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Figure E2: Estimated impulse responses of ln(CPI) to US monetary policy shock from LP-IV

(a) Case 1: No Auxiliary Controls
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(b) Case 2: With Auxiliary Controls
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Notes: Estimated IRF of US ln(CPI) to US monetary-policy shock that leads to 1p.p. increase in 1-year Treasury
yield, instrumented with Miranda-Agrippino and Ricco (2021) shock. Shaded area denotes 90% confidence bands
constructed from heteroskedasticity and autocorrelation robust standard errors. Sample: 1990:01-2007:12.

Figure E3: Estimated impulse responses to US monetary policy shock from Proxy SVAR

(a) 1-Year Treasury Yield
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Notes: Estimated IRF of key US variables to US monetary-policy shock, normalised as 1p.p. increase in effective
federal funds rate from one- and two-step Proxy-SVAR. Shaded area denotes 90% confidence bands constructed
from Jentsch and Lunsford (2019) residual-based moving block bootstrap.

44


	Introduction
	Identification of Dynamic Causal Effects with Control Variables
	Structural Moving-Average Model
	Identification in Structural Moving-Average Model
	Potential-Outcomes Framework

	Omitted-Variable Bias in the Two-Step Approach
	General Setup
	Omitted-Variable Bias Result
	Discussion

	Omitted-Variable Bias in Specific Settings
	Ordinary Least Squares (OLS)
	Instrumental Variables (IV)
	Quantile Regression (QR)

	Empirical Applications
	Ordinary Least Squares
	Instrumental Variables
	Quantile Regression

	Conclusions
	Identification With Controls
	Structural Moving-Average Model
	Potential-Outcomes Framework

	Additional Results on Standard Errors
	Alternative Standard Errors for OLS
	IV Standard Errors

	Internal Instruments in Structural VARs
	External Instruments in Structural VARs
	Empirical Application: Additional Results
	Data Sources
	Monetary-Policy Shock Construction
	Additional Results for IV Application


