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Abstract

We document that currencies with a steeper yield curve tend to depreciate against the US

dollar, independently of interest-rate differentials, especially at 2 to 4-year horizons. Using

survey data, we demonstrate that this relationship is driven by expectations of macroeco-

nomic fundamentals reflected in the yield-curve slope. Within a no-arbitrage, preference-

free framework, we highlight the role of unspanned transitory risk factors as drivers of both

cross-country differences in yield-curve slopes and exchange-rate risk premia. These ‘hidden’

factors can emerge endogenously in models of domestically incomplete markets, explaining

both our documented relationship and the ‘disconnect’ of exchange rates from interest rates.
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1 Introduction

A long-standing literature in international macroeconomics has questioned whether exchange

rates can be connected to macroeconomic fundamentals, highlighting an ‘exchange-rate discon-

nect’ (Meese and Rogoff, 1983; Itskhoki and Mukhin, 2021).1 In parallel, leading contributions

in asset pricing have taken exchange-rate puzzles at face value, evaluating the restrictions they

impose on the pricing of risk (e.g., Backus, Foresi, and Telmer, 2001; Lustig, Stathopoulos, and

Verdelhan, 2019). The most prominent of these is the failure of the uncovered interest parity

(UIP) condition, which predicts that high interest-rate currencies should depreciate to equalize

exchange-rate-adjusted returns (Fama, 1984) and, relatedly, the lack of predictability of ex-

change rates by short-term interest-rate differentials (e.g., Chernov and Creal, 2023). To the

extent that macroeconomic fundamentals relevant for exchange-rate fluctuations are captured

in interest-rate differentials, the failure of UIP is frequently viewed as corroborating evidence

of a disconnect.

In this paper, we shift focus from spot-yield differentials to the ‘shape’ of the yield curve,

particularly its slope. We show that fluctuations in relative yield-curve slope across countries

explain exchange-rate dynamics. Drawing on a literature identifying the yield-curve slope as

a leading indicator of macroeconomic outcomes (Estrella and Hardouvelis, 1991; Estrella and

Mishkin, 1998; Estrella, 2005), we investigate whether cross-country slope differentials offer

scope to ‘reconnect’ currency moves to fundamentals both theoretically, within a no-arbitrage

framework, and empirically, using survey data on macroeconomic expectations.

Our starting point is the canonical UIP regression, which we augment with cross-country

differences in yield-curve factors. We first document that advanced economies with a relatively

steep yield curve tend to depreciate in excess of UIP, vis-à-vis the US, with the relationship

strongest at 2 to 4-year horizons. Then, we isolate the specific contribution of the relative yield-

curve slope in explaining variation in bond risk premia and exchange-rate risk premia (ERRP),

across holding periods and bond maturities, extending the empirical analysis in Lustig et al.

(2019). Our results suggest the relationship between exchange rates and the relative yield-curve

slope is predominantly driven by the ERRP and is orthogonal to interest-rate differentials. In

both the augmented UIP regression and the decomposition of risk premia, we identify a tent-

shaped relationship, across holding periods, for a range of bond maturities. This result is robust

to a range of specification changes, including to the inclusion of liquidity yields (Du, Im, and

Schreger, 2018; Engel and Wu, 2022) (i.e., the non-monetary return that government bonds

provide because of their safety, ease of resale, and value as collateral).

To interpret our results through the lens of theory, we then ask two questions: (i) what risks

drive the relationship between yield curves and ERRP, and (ii) can this be consistent with the

disconnect of exchange rates from short-term interest rates?

Our answer to the first question is that, within a no-arbitrage, preference-free framework,

1Naturally, this has also motivated a literature which attempts to ‘reconnect’ currency moves to fundamentals,
using production data (Colacito, Riddiough, and Sarno, 2020), capital flows (Lilley, Maggiori, Neiman, and
Schreger, 2022), or productivity-news shocks (Chahrour, Cormun, De Leo, Guerron-Quintana, and Valchev,
2021).
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transitory innovations (Alvarez and Jermann, 2005) are crucial. They generate a negative

autocorrelation of stochastic discount factors (SDFs) and ensure that yield curves slope upwards

on average (Piazzesi and Schneider, 2007). Facing shocks today, investors expect booms—

periods in which consumption has low marginal value—to be followed by busts—periods in which

consumption has high marginal value—in line with a notion of ‘business-cycle risk’.2 Extending

this logic to a two-country setting, we show this implies that cross-country differences in yield-

curve slopes will reflect asymmetries in business-cycle risk. In turn, this correlates with ERRP,

which reflect cross-country differences in the volatility of SDFs—the permanent component of

which has been shown to be close to zero (Lustig et al., 2019), thus leaving transitory risk as

the primary driver.

We test this prediction empirically using survey expectations from Consensus Economics

for our set of advanced countries and document that expectations of GDP and inflation, relative

to the US, explain a significant portion of variation in the relative yield-curve slope. We then

estimate the relationship between the (fitted) relative yield-curve slope, explained by varia-

tion in macroeconomic expectations, and ERRP—comparing it to the unexplained component.

Strikingly, we find that only movements in the fitted component, which captures cross-country

asymmetries in business-cycle dynamics, are a significant predictor of ERRP at intermediate

horizons. The unexplained component is only significant at short horizons.

To address the second question, we show that our regression evidence specifically suggests

the presence of transitory innovations which have offsetting effects on the mean and variance of

SDFs, but matter for SDF autocorrelation. Building on this, we consider a simple model which

rationalizes both the relationship between relative yield-curve slope and ERRP in closed form

and the lack thereof between exchange rates and spot-yield differentials. The model extends the

SDF process considered in Alvarez and Jermann (2005) and Backus, Chernov, and Zin (2014),

which resembles the canonical Vasicek (1977) model for the term-structure of interest rates,

and we use it to undertake a risk-accounting exercise. We allow for three sources of risk: (i)

an uncorrelated permanent shock, (ii) a transitory shock and (iii) a transitory shock which is

‘hidden’ from the short rate. Both risk-factors (i) and (iii) are not fully reflected in yields and

so maintain a disconnect between ERRP and spot-yield differentials. But only risk-factor (iii)

can drive the relationship between the relative yield-curve slope and ERRP, confirming that

their association can be consistent with an apparent disconnect.

Furthermore, we illustrate that these hidden factors arise as equilibrium outcomes in a

class of incomplete-markets models. Consider a framework where there are two investors in the

domestic economy. The marginal investor trades in both Home and Foreign bonds and is exposed

to two transitory factors, while the other only invests in Home bonds and is exposed only to the

first factor. In this case, the absence of arbitrage requires that the second factor be hidden from

the bond price (i.e., it be unspanned), since investors must agree on pricing of the domestic

bond. Indeed, this framework relates to models with preferred habitats (e.g., Gourinchas, Ray,

and Vayanos, 2022; Greenwood, Hanson, Stein, and Sunderam, 2023), but our approach allows

2This is consistent with Basu et al. (2021) who identify a ‘risk shock’ that drives a large portion of aggregate
comovement over the business-cycle and contributes to a positive yield-curve slope.
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us to specifically focus on spanning properties and the horizon of risk. Alternatively, we explain

that our framework may capture heterogeneous expectations of agents over fundamentals and

expectation formation need not be rational.3

We conclude by showing that our findings survive in a class of dynamic asset-pricing models

that allow for time-varying volatility (e.g., Cox, Ingersoll, and Ross, 1985) and shares common

implications with prominent equilibrium models in the literature—i.e., habits (Campbell and

Cochrane, 1999) and long-run risk (Bansal and Shaliastovich, 2013). For this, we build on a

model of central tendency (Balduzzi, Das, and Foresi, 1998; Ang and Chen, 2010) to consider a

factor which drives the bond premium (through the autocorrelation of SDFs), but leaves interest

rates unchanged.

Related Literature. Our work builds on the classic literature on the forward-premium puzzle

(Hansen and Hodrick, 1980; Fama, 1984), and analyses of UIP across time (Engel, 2016) and

horizons (Chinn and Meredith, 2005; Chinn and Quayyum, 2012; Chernov and Creal, 2020).

We focus on the cross-time component of UIP failures, which Hassan and Mano (2019) show

is an important component of currency predictability. Specifically, our empirical setup builds

on Lustig et al. (2019). While they show that, for a given one-month holding period, the term

structure of carry trade is decreasing, we extend their specification across holding periods to

show that the relative slope is a significant predictor of ERRP at business-cycle horizons, for a

range of maturities, orthogonally to interest-rate differentials. Several other papers (e.g., Engel,

2016; Valchev, 2020) focus on the horizon variation in the path for exchange rates, conditional

on interest rates, but we extend their analysis to the term structure.

A number of papers show that yield-curve factors can significantly predict ERRP, but many

focus on horizons shorter than ours (less than 2 years) (Ang and Chen, 2010; Gräb and Kostka,

2018). While Chen and Tsang (2013) also study longer horizons, they only find significance

at short ones. We attribute this difference to the fact Chen and Tsang (2013) capture relative

yield-curve factors by directly estimating Nelson and Siegel (1987) decompositions from relative

interest-rate differentials, thus assuming common factor structures across countries. In contrast,

we construct proxies for factors using yield curves estimated on a country-by-country basis,

allowing factor structures to be country-specific.

We argue that yield curves reflect transitory business-cycle risks, and show that this can

explain time-series variation in ERRP. Colacito, Riddiough, and Sarno (2020) also attribute

a role to business cycles in explaining ERRP, but in the cross-section—sorting currencies by

output gap. Insofar as a high output gap contributes to a steeper yield-curve slope, our find-

ings are consistent. However, whilst the output gap is backward-looking, our paper assesses

the ability of the forward-looking term structure to explain ERRP. We further use measures of

macroeconomic expectations, contributing to a growing literature using forecasts from Consen-

3Tying to our empirics, this is consistent with a literature highlighting that survey forecast errors are auto-
correlated (Bordalo, Gennaioli, Ma, and Shleifer, 2020; Candian and De Leo, 2023). This may explain why
long-term bond prices, which correlate with surveys, are better able to reconnect exchange rates with, at least,
subjective expectations of macro variables.
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sus Economics to assess exchange-rate anomalies (e.g., Candian and De Leo, 2023; Stavrakeva

and Tang, 2023), extending the analysis of Bansal and Shaliastovich (2013) who find that the

country-specific survey expectations explain variation in country-specific yield-curve slopes.

Theoretically, we contribute to a literature using term structure models to explain ERRP

(e.g., Lustig et al., 2019; Chernov and Creal, 2023). First, relative to these papers, we define

transitory hidden factors and show they are required to rationalize the relationship between yield

curves and ERRP. Second, while term-structure models are almost exclusively written under

complete markets with a unique SDF, we contribute to a nascent literature on hidden factors

Joslin, Priebsch, and Singleton (2014) and a small literature discussing market incompleteness

(e.g., Bakshi, Crosby, Gao, and Hansen, 2023), illustrating how these factors arise as equilibrium

outcomes in models of inomplete markets. Finally, turning to models of stochastic volatility,

we build on Balduzzi et al. (1998) and Ang and Chen (2010) who construct an example where

ERRP are forecastable only by factors present in the term structure but hidden from the short

rate. We further highlight the difficulties the model must overcome to additionally the failure

of UIP, positive yield curves and a relationship between bond premia and ERRP.

Outline. Section 2 presents the UIP regression augmented with yield-curve factors, before we

use a generalized regression allowing for variable holding periods in Section 3. In Section 4, we

lay out a preference-free, no-arbitrage framework to establish a link between yield curves and

transitory risk, before testing it empirically using survey data. Section 5 rationalizes our find-

ings, alongside the exchange-rate disconnect, with a term-structure model. Section 6 concludes.

2 Exchange Rates and the Yield-Curve Slope

To motivate our analysis, we estimate canonical UIP regressions across horizons augmented

with relative yield-curve factors, presenting a novel empirical finding through the lens of a

well-established framework. In doing so, we also describe the data used throughout.

2.1 Canonical UIP Regression

The UIP regression for κ-month-ahead exchange-rate changes is written as:

ej,t+κ − ej,t = β1,κ
(
r∗j,t,κ − rt,κ

)
+ fj,κ + uj,t+κ (1)

where ej,t ≡ log(Ej,t) is the (log) exchange rate of the Foreign country j vis-à-vis Home (base)

currency at time t. It is defined as the Foreign price of a unit of base currency such that an

increase in ej,t corresponds to a Foreign depreciation. r∗j,t,κ is the net κ-period continuously-

compounded return in the Foreign country and rt,κ is the corresponding Home return. fj,κ is a

country fixed effect and uj,t+κ is the disturbance.

Under the joint assumption of risk neutrality and rational expectations, the null hypothesis

of UIP is that β1,κ = 1 for all κ > 0 (and fj,κ = 0 for all j and κ > 0). Empirical rejections of UIP
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Figure 1: Estimated coefficients from canonical UIP regression at different horizons
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Notes: Red crosses denote β̂1,κ estimates from regression (1). Horizontal axis denotes the horizon κ in months.

Regressions estimated using pooled monthly data for 6 currencies (AUD, CAD, CHF, EUR, JPY, GBP) against

the USD from 1980:01 to 2019:12, including country fixed effects. 95% confidence intervals, calculated using

Driscoll and Kraay (1998) standard errors, denoted by red bars around point estimates.

at short to medium horizons—i.e., finding β̂1,κ ̸= 1 for small to medium κ—have regularly been

used to motivate claims that interest rates do not adequately explain exchange-rate dynamics.

Data. We estimate regression (1) using exchange- and interest-rate data for 7 jurisdictions

with liquid bond markets: Australia, Canada, Switzerland, Euro Area, Japan, UK, and US.

The US is the base country among our sample of G7 currencies. To capture the term structure

of interest rates in each region, we use nominal zero-coupon government bond yields of 6, 12, 18,

..., 120-month maturities. Yield curves are obtained from a combination of sources, including

central banks and Wright (2011) (Appendix A), so our bond-yield panel is unbalanced. Nominal

exchange rate data is from Datastream. We use end-of-month data from 1980:01 to 2019:12.

Results. Figure 1 plots UIP coefficient estimates β̂1,κ, which are also tabulated in Appendix B.

Confidence bands around point estimates are derived from Driscoll and Kraay (1998) standard

errors, which correct for heteroskedasticity and serial correlation. The coefficient estimates

reinforce the view that the UIP hypothesis can be rejected at short to medium horizons, but

is harder to reject at longer horizons. Point estimates are negative at 6 to 42-month tenors,

indicating that high short-term interest rate currencies tend to appreciate, instead of depreciate.

Longer-horizon point estimates are positive and close to unity, corroborating with, e.g., Chinn

and Meredith (2005) and Chinn and Quayyum (2012).
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2.2 Yield Curve-Augmented Regression

To illustrate the link between exchange rates and the yield-curve slope, we augment regression

(1) with measures of the relative yield-curve slope S∗
j,t−St and curvature C∗

j,t−Ct, estimating:

ej,t+κ − ej,t = β1,κ
(
r∗j,t,κ − rt,κ

)
+ β2,κ

(
S∗
j,t − St

)
+ β3,κ

(
C∗
j,t − Ct

)
+ fj,κ + uj,t+κ (2)

for all κ, where S∗
j,t (C

∗
j,t) is the slope (curvature) of the Foreign-country-j yield curve at time t,

and St (Ct) is the slope (curvature) of the base-country yield curve. Within this specification,

the coefficient β2,κ captures the relationship between the relative slope and exchange rates that

is orthogonal to interest-rate differentials and the relative curvature.

Along with the yield-curve level, the slope and curvature are known to capture a high degree

of variation in bond yields (Litterman and Scheinkman, 1991). We proxy the relative level in

regression (2) with the κ-period interest-rate differential (r∗j,t,κ − rt,κ). This ensures that the

specification nests UIP, such that β2,κ captures the yield-curve slope’s contribution over and

above spot-yield differentials. Defining the ex post κ-period ERRP for Foreign currency as

rxFX
j,t,κ ≡ r∗j,t,κ − rt,κ − (ej,t+κ − ej,t) and combining with equation (2) yields:

rxFX
j,t,κ = (1− β1,κ)

(
r∗j,t,κ − rt,κ

)
− β2,κ

(
S∗
j,t − St

)
− β3,κ

(
C∗
j,t − Ct

)
− fj,κ − uj,t+κ (3)

From this, we see that β2,κ can be interpreted as either the average Foreign depreciation (in

percent) or the average decrease in the ERRP (in pp) associated with a 1pp increase in the

slope of the Foreign yield curve relative to the US.

We measure the yield-curve slope and curvature in each region with proxies. We define the

slope as the difference between the 10-year and 6-month yields, S∗
j,t ≡ y∗j,t,10y−y∗j,t,6m. We proxy

the curvature using a butterfly spread, a function of 6-month, 5 and 10-year yields (Diebold

and Rudebusch, 2013): C∗
j,t ≡ 2y∗j,t,5y − (y∗j,t,6m + y∗j,t,10y).

4 Our relative yield-curve proxies

are constructed by taking cross-country differences derived from yield curves estimated on a

country-by-country basis, therefore we do not assume any symmetry in the factor structure of

yield curves across countries.

Results. Figure 2a presents our key result, plotting the relative-slope coefficient estimates

β̂2,κ from equation (2). It highlights a tent-shaped relationship across horizons between the

relative slope and κ-period exchange-rate dynamics, controlling for interest-rate differentials.

Coefficients are significantly different from zero at the 95% level between the 2 to 5-year tenors,

business-cycle horizons. The relationship peaks at 3.5 years, where point estimates indicate

that a 1pp increase in a country’s yield curve slope relative to the US is, on average, associated

with a 5.7% exchange-rate depreciation over that horizon and, by equation (3), a commensurate

change in ex post ERRP.

4We prefer these proxies to principal-component estimates of the slope and curvature, which potentially contain
look-ahead bias, being defined using weights estimated using information in the whole sample. By construction,
our proxies are only based on information available up to time t. Nevertheless, our findings are robust to the use
of principal-component-based measures.
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Figure 2: Results from augmented UIP regression
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Notes: (a) Black circles denote β̂2,κ estimates from regression (2). (b) adjusted R2 from regression (1) (red

crosses) and (2) (black circles). Horizontal axes denote the horizon κ in months. Regressions estimated using

pooled monthly data for 6 currencies (AUD, CAD, CHF, EUR, JPY, GBP) against the USD from 1980:01 to

2019:12, including country fixed effects. 95% confidence intervals, calculated using Driscoll and Kraay (1998)

standard errors, denoted by black bars around point estimates.

Moreover, at intermediate horizons, the augmented model delivers substantially greater

explanatory power. Figure 2b illustrates the associated adjusted R2. The marginal increase in

fit is largest at 2 to 4-year horizons, where the percentage of variation explained by the model

exceeds 10%, of which about half is attributable to the inclusion of the relative yield-curve

factors. The within-country R2—tabulated in Appendix B, Table 1—paints an even starker

image. At the 3.5-year tenor, the within R2 from the yield-curve-augmented model is 5.1%,

relative just to 0.3% from the baseline UIP regression.

At shorter and longer horizons, especially at tenors of less than 2 years and more than 5,

point estimates on the relative yield-curve slope are insignificant and close to zero. Moreover, at

all tenors, coefficient estimates on spot-yield differentials β̂1,κ are insignificantly different from

their baseline-regression point estimates, although error bands are somewhat wider.

Robustness. We present robustness analysis for the tent-shaped relationship between cur-

rency dynamics across horizons and the relative slope in Appendix B. First, we show the result

is robust to the exclusion of the relative yield-curve curvature from regression (2). Second, it

is robust to the additional exclusion of spot-yield differentials, which are themselves predicted

by the yield-curve slope. Third, but equally important, we demonstrate robustness with alter-

native, more conservative, inference (Valkanov, 2003; Moon, Rubia, and Valkanov, 2004) and

alternative sub-samples (e.g., pre- and post-2008). However, we concede that, like other UIP

patterns, the tent-shaped relationship is specific to using the US dollar as the base currency,

suggestive of a global ‘dollar’ factor, consistent with the analysis in, e.g., Jiang (2024).
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3 Excess Returns, Risk Premia and the Yield-Curve Slope

The evidence presented in Section 2 highlights a relationship between exchange-rate dynamics,

vis-à-vis the US dollar, and the relative yield-curve slope at intermediate horizons. In this

section, we assess the association between the relative yield-curve slope and different components

of bond returns, namely: ERRP and local-currency bond premia. Additionally, this analysis

reduces the empirical challenges posed by limiting the number of non-overlapping observations

in long-horizon forecasting regressions, like (1) and (2), as κ increases.

3.1 Empirical Setup

Let Pt,κ denote the price of a κ-maturity zero-coupon bond at time t and Rt,κ ≥ 1 denote the

gross return on that bond. To decompose bond returns, we distinguish a bond’s maturity κ

from its holding period h, where h ≤ κ and h = κ if and only if the bond is held to maturity,

in which case the analysis coincides with Section 2. The h-month holding period return on a

κ-month zero-coupon bond is HPR
(κ)
t,t+h = Pt+h,κ−h/Pt,κ (the bond’s resale price at t+ h when

its maturity has diminished by h months relative to its time-t price). The (log) excess return

on that bond over the holding period h is thus:

rx
(κ)
t,t+h = log

HPR
(κ)
t,t+h

Rt,h

 (4)

where Rt,h is the gross return on an h-month zero-coupon bond at time t, the risk-free rate.

The h-period (log) return on a Foreign bond, expressed in US dollars, in excess of the

risk-free return in the base currency, rx
(κ),$
t,t+h, can be decomposed as:

rx
(κ),$
t,t+h = log

HPR
(κ)∗
t,t+h

Rt,h

Et
Et+h

 = log

HPR
(κ)∗
t,t+h

R∗
t,h

+ log

[
R∗

t,h

Rt,h

Et
Et+h

]
= rx

(κ)∗
t,t+h + rxFX

t,t+h (5)

where rx
(κ)∗
t,t+h represents the (log) local-currency bond return from a Foreign bond and rxFX

t,t+h

is the (log) currency excess return.

To study the drivers of these returns, we first estimate the following panel regressions for

different holding periods h and bond maturities κ:

y
(κ)
j,t,h = γ

(κ)
2,h

(
S∗
j,t − St

)
+ f

(κ)
j,h + ε

(κ)
j,t+h (6)

where y
(κ)
j,t,h is either:

• rx
(κ),$
j,t,t+h − rx

(κ)
US,t,t+h: the dollar bond-return difference, the excess return on the Foreign

bond in US dollar terms relative to the US return;

• rxFX
j,t,t+h: the exchange-rate risk premium (ERRP), the excess return from Foreign cur-

rency; or,
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• rx
(κ)∗
j,t,t+h − rx

(κ)
US,t,t+h: the local-currency bond-return difference, the excess return on the

Foreign bond in Foreign-currency terms relative to the US return.

The coefficient γ
(κ)
2,h has a similar interpretation to β2,κ from Section 2 with two differences: the

expected sign is now negative, since excess returns are defined on Foreign bonds, as equation

(3) clarifies; and the excess returns in our empirical exercises are annualised.

Regression (6) aligns with the specification in Lustig et al. (2019)—although Lustig et al.

(2019) consider a 1-month holding period, while we look at 6-month holding periods, so compar-

ison is not exact. Focusing on h = 1 and κ = 120 only, they show that the relative yield-curve

slope has an insignificant influence on dollar bond-return differences, but opposing effects on

local-currency bond-return differences (positive coefficient) and ERRP (negative coefficient)

that cancel out overall. Our empirical framework extends this, assessing the predictability of

excess returns with yield-curve slope differentials at a range of maturities κ and holding periods

h, bridging the gap between the canonical UIP regressions in Section 2 and Lustig et al. (2019).

To account for the contribution of the relative slope over and above spot-yield differentials,

as in Section 2, we also estimate the following extending regression:

y
(κ)
j,t,h = γ

(κ)
1,h

(
r∗j,t,h − rt,h

)
+ γ

(κ)
2,h

(
S∗
j,t − St

)
+ f

(κ)
j,h + ε

(κ)
j,t+h (7)

where the maturity of the relative spot yield here matches the holding period h of the excess

return on the left-hand side y
(κ)
j,t,h.

3.2 Results

Tables 1 and 2 present the full results for regression (6), with Figure 3 focusing on the coef-

ficient estimates for the 10-year maturity only (κ = 120). Importantly, where our regression

specification most closely matches Lustig et al. (2019), at short holding periods h = 6 and

the longest maturity κ = 120, our results mirror theirs. The relative slope is insignificantly

associated with the dollar bond-return difference (Panel A), a positive and significant influence

on the local-currency bond-return difference (Panel C), and a negative and significant influence

on the ERRP (Panel B). The latter two effects approximately cancel out for dollar bond-return

differences.5

Exploring our results at all holding periods h and for all maturities κ, two observations are

noteworthy. First, while the relative yield-curve slope does not significantly predict dollar bond-

return differences at the 6-month holding period for 10-year bonds, the relative-slope loading

for the same bond maturity is significantly non-zero over some longer holding periods. While, in

the former case, the influence of the relative slope on currency and local-currency bond returns

offset one another (in line with Lustig et al., 2019), our results indicate that the influence of

the relative slope on the currency premium dominates over longer holding periods, even for

long-term bonds. Nevertheless, for a given holding period, the influence of the relative slope on

5More generally, the short-horizon local-currency bond-return difference predictability confirm results for US
bond returns (see, e.g., Fama and Bliss, 1987; Campbell and Shiller, 1991; Cochrane and Piazzesi, 2005).
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Table 1: Slope coefficient estimates from dollar bond-return and ERRP regressions

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Holding Periods h

6m 12m 18m 24m 30m 36m 42m 48m 54m 60m

Panel A: Dependent Variable rx
(κ),$
j,t,t+h − rx

(κ)
US,t,t+h

12m -2.52***
(0.79)

18m -2.50*** -2.17***
(0.78) (0.58)

24m -2.45*** -2.15*** -2.04***
(0.77) (0.57) (0.44)

30m -2.39*** -2.12*** -2.04*** -1.75***
(0.76) (0.56) (0.44) (0.36)

36m -2.32*** -2.08*** -2.02*** -1.76*** -1.55***
(0.75) (0.55) (0.43) (0.35) (0.28)

42m -2.25*** -2.03*** -1.98*** -1.75*** -1.56*** -1.28***
(0.75) (0.54) (0.42) (0.35) (0.28) (0.22)

48m -2.17*** -1.97*** -1.94*** -1.73*** -1.55*** -1.28*** -0.95***
(0.74) (0.54) (0.41) (0.34) (0.27) (0.22) (0.19)

54m -2.08*** -1.90*** -1.89*** -1.70*** -1.52*** -1.27*** -0.95*** -0.65***
(0.74) (0.54) (0.41) (0.34) (0.27) (0.22) (0.19) (0.18)

60m -1.99*** -1.83*** -1.83*** -1.66*** -1.49*** -1.25*** -0.93*** -0.65*** -0.42**
(0.74) (0.53) (0.41) (0.34) (0.27) (0.22) (0.19) (0.19) (0.18)

66m -1.89** -1.75*** -1.77*** -1.62*** -1.46*** -1.22*** -0.91*** -0.63*** -0.41** -0.30*
(0.74) (0.53) (0.40) (0.33) (0.27) (0.22) (0.19) (0.18) (0.18) (0.17)

72m -1.80** -1.68*** -1.71*** -1.57*** -1.41*** -1.18*** -0.88*** -0.61*** -0.40** -0.29*
(0.74) (0.53) (0.40) (0.33) (0.27) (0.22) (0.19) (0.18) (0.17) (0.17)

78m -1.70** -1.60*** -1.64*** -1.51*** -1.36*** -1.14*** -0.84*** -0.58*** -0.38** -0.28*
(0.74) (0.53) (0.40) (0.33) (0.27) (0.22) (0.19) (0.18) (0.17) (0.16)

84m -1.61** -1.52*** -1.58*** -1.46*** -1.31*** -1.10*** -0.81*** -0.55*** -0.36** -0.26
(0.74) (0.53) (0.40) (0.33) (0.27) (0.22) (0.19) (0.18) (0.17) (0.16)

90m -1.51** -1.44*** -1.51*** -1.40*** -1.26*** -1.05*** -0.76*** -0.52*** -0.33** -0.24
(0.74) (0.53) (0.40) (0.33) (0.27) (0.22) (0.19) (0.18) (0.17) (0.16)

96m -1.42* -1.36** -1.44*** -1.34*** -1.21*** -1.00*** -0.72*** -0.49*** -0.31* -0.22
(0.74) (0.53) (0.40) (0.33) (0.27) (0.22) (0.19) (0.18) (0.16) (0.15)

102m -1.33* -1.29** -1.37*** -1.29*** -1.16*** -0.95*** -0.68*** -0.46** -0.28* -0.20
(0.74) (0.53) (0.40) (0.33) (0.27) (0.22) (0.19) (0.18) (0.16) (0.15)

108m -1.24* -1.21** -1.31*** -1.23*** -1.10*** -0.91*** -0.64*** -0.42** -0.25 -0.18
(0.74) (0.53) (0.40) (0.33) (0.27) (0.22) (0.20) (0.18) (0.16) (0.15)

114m -1.15 -1.14** -1.24*** -1.17*** -1.05*** -0.86*** -0.59*** -0.39** -0.22 -0.16
(0.74) (0.54) (0.40) (0.33) (0.27) (0.22) (0.20) (0.18) (0.16) (0.15)

120m -1.07 -1.06** -1.18*** -1.12*** -1.00*** -0.81*** -0.55*** -0.35* -0.20 -0.14
(0.74) (0.54) (0.40) (0.33) (0.27) (0.23) (0.20) (0.18) (0.16) (0.14)

Panel B: Dependent Variable rxFX
j,t,t+h

SR -2.51*** -2.16*** -2.03*** -1.73*** -1.53*** -1.27*** -0.95*** -0.65*** -0.43** -0.31*
(0.81) (0.59) (0.46) (0.37) (0.29) (0.23) (0.19) (0.19) (0.18) (0.18)

Notes: Coefficient estimates on the relative yield curve slope SR
t ≡ S∗

t − St from regressions with the (log) dollar bond-return difference

(Panel A) or the (log) ERRP (Panel B) as dependent variables. Regressions estimated using pooled end-of-month data for 6 currencies

(AUD, CAD, CHF, EUR, JPY, GBP) against the USD for 1980:01-2019:12. Log returns are annualised. All regressions include country

fixed effects. The panels are unbalanced and Driscoll and Kraay (1998) standard errors are reported in parentheses. ∗, ∗∗ and ∗ ∗ ∗ denote

significant point estimates at 10%, 5% and 1% levels, respectively.
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Table 2: Slope coefficient estimates from local-currency bond-return regressions

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Holding Periods h

6m 12m 18m 24m 30m 36m 42m 48m 54m 60m

Panel C: Dependent Variable rx
(κ)
j,t,t+h − rx

(κ)
US,t,t+h

12m -0.01
(0.05)

18m 0.02 -0.01
(0.09) (0.03)

24m 0.07 0.01 -0.01
(0.12) (0.06) (0.03)

30m 0.12 0.04 -0.01 -0.03
(0.16) (0.09) (0.05) (0.02)

36m 0.19 0.08 0.01 -0.03 -0.02
(0.19) (0.12) (0.08) (0.04) (0.02)

42m 0.26 0.14 0.05 -0.03 -0.02 -0.01
(0.21) (0.14) (0.10) (0.06) (0.03) (0.01)

48m 0.35 0.20 0.09 -0.01 -0.01 -0.01 -0.01
(0.24) (0.16) (0.11) (0.07) (0.05) (0.03) (0.01)

54m 0.43* 0.26 0.14 0.03 0.01 -0.00 -0.00 -0.00
(0.26) (0.17) (0.13) (0.09) (0.06) (0.04) (0.02) (0.01)

60m 0.52* 0.33* 0.20 0.06 0.04 0.02 0.02 0.01 0.00
(0.28) (0.19) (0.14) (0.10) (0.07) (0.05) (0.04) (0.02) (0.01)

66m 0.62** 0.41** 0.26 0.11 0.08 0.05 0.04 0.02 0.01 0.01
(0.30) (0.20) (0.16) (0.11) (0.09) (0.06) (0.05) (0.03) (0.02) (0.01)

72m 0.71** 0.49** 0.32* 0.16 0.12 0.09 0.07 0.04 0.03 0.02
(0.31) (0.21) (0.17) (0.12) (0.09) (0.07) (0.05) (0.04) (0.03) (0.02)

78m 0.81** 0.56** 0.39** 0.21 0.17* 0.13* 0.10* 0.07 0.05 0.03
(0.33) (0.23) (0.18) (0.13) (0.10) (0.08) (0.06) (0.05) (0.04) (0.02)

84m 0.90*** 0.64*** 0.45** 0.27* 0.22** 0.17** 0.14** 0.10* 0.07 0.05
(0.34) (0.24) (0.19) (0.14) (0.11) (0.09) (0.07) (0.06) (0.04) (0.03)

90m 1.00*** 0.72*** 0.52*** 0.33** 0.27** 0.22** 0.18** 0.13** 0.09* 0.07*
(0.35) (0.25) (0.20) (0.15) (0.12) (0.09) (0.08) (0.06) (0.05) (0.04)

96m 1.09*** 0.80*** 0.59*** 0.38** 0.32** 0.27*** 0.23*** 0.16** 0.12** 0.09*
(0.36) (0.26) (0.21) (0.16) (0.13) (0.10) (0.09) (0.07) (0.06) (0.04)

102m 1.18*** 0.88*** 0.65*** 0.44*** 0.38*** 0.32*** 0.27*** 0.20** 0.15** 0.11**
(0.37) (0.27) (0.22) (0.17) (0.14) (0.11) (0.09) (0.08) (0.07) (0.05)

108m 1.27*** 0.95*** 0.72*** 0.50*** 0.43*** 0.36*** 0.31*** 0.23*** 0.17** 0.13**
(0.39) (0.29) (0.23) (0.18) (0.14) (0.12) (0.10) (0.09) (0.07) (0.06)

114m 1.36*** 1.03*** 0.79*** 0.56*** 0.48*** 0.41*** 0.36*** 0.27*** 0.20*** 0.15**
(0.40) (0.30) (0.24) (0.19) (0.15) (0.12) (0.11) (0.09) (0.08) (0.06)

120m 1.44*** 1.10*** 0.85*** 0.62*** 0.53*** 0.46*** 0.40*** 0.30*** 0.23*** 0.17**
(0.41) (0.31) (0.25) (0.20) (0.16) (0.13) (0.12) (0.10) (0.08) (0.07)

Notes: Coefficient estimates on the relative yield curve slope S∗
t − St from regressions with the (log) local-currency bond-return difference

(Panel C) as dependent variable. Regressions estimated using pooled end-of-month data for 6 currencies (AUD, CAD, CHF, EUR, JPY,

GBP) against the USD for 1980:01-2019:12. Log returns are annualised. All regressions include country fixed effects. The panels are

unbalanced and Driscoll and Kraay (1998) standard errors are reported in parentheses. ∗, ∗∗ and ∗ ∗ ∗ denote significant point estimates

at 10%, 5% and 1% levels, respectively.

12



Figure 3: Estimated relative slope coefficients from excess-return regressions across holding
periods for 10-year maturity
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Notes: γ̂
(120)
2,h estimates from regression (6) for dollar bond-return differences (blue diamonds), exchange-rate

risk premia (maroon circles) and local-currency bond-return differences (grey crosses). Horizontal axis denotes

the holding period h in months. Regressions estimated using pooled monthly data for 6 currencies (AUD, CAD,

CHF, EUR, JPY, GBP) against the USD from 1980:01 to 2019:12, including country fixed effects. 95% confidence

intervals, calculated using Driscoll and Kraay (1998) standard errors, denoted by shaded areas/bars around point

estimates.

dollar bond returns decreases in magnitude with maturity.

Second, for a given maturity, the loading on the relative slope tends to peak in magnitude

at short-to-medium holding periods for the dollar bond risk premium. For the 102-month

maturity, and above, the peak coefficient occurs at the 18-month holding period. This gives rise

to a(n inverse) tent shaped relationship in the coefficients across h, as the Figure 3 shows for

dollar bond-return differences for the 10-year maturity. Although significant at shorter holding

periods and longer maturities, the relative slope loadings are quantitatively small for local-

currency bond premia and are dominated by loadings on currency excess returns in explaining

the relative slope’s impact on relative dollar-bond risk premia.

The (inverse) tent-shaped relationship between the relative slope and excess returns arises

when controlling for spot-yield differentials, as in regression (7). Figure 4 demonstrates this,

presenting the coefficient estimates on the relative slope for ERRP from that regression, com-

pared to the benchmark regression (6). The coefficient estimates are also tabulated in Panel

A of Table 3. In the specification with spot-yield differentials as controls, the negative coef-

ficient on the relative slope is significantly different from zero from the 2 to 4-year holding

periods. Therefore our results indicate that the relative slope has predictive power over and

above spot-yield differences at business-cycle horizons specifically.

3.3 Robustness

In this sub-section, we briefly summarize the robustness of these empirical findings.
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Figure 4: Estimated relative slope coefficients from ERRP regressions across holding periods
with and without controlling for relative spot-yield differentials
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Notes: γ̂2,h estimates from regressions (6) (maroon circles) and (7) (black circles) for exchange-rate risk premia.

Horizontal axis denotes the holding period h in months. Regressions estimated using pooled monthly data for

6 currencies (AUD, CAD, CHF, EUR, JPY, GBP) against the USD from 1980:01 to 2019:12, including country

fixed effects. 95% confidence intervals, calculated using Driscoll and Kraay (1998) standard errors, denoted by

shaded areas/bars around point estimates.

Sub-Sample Stability. Panels B, C and D of Table 3 demonstrate that the association

between the relative slope and ERRP, against the US dollar, is robust to sub-sample splits.

Panel B presents a pre-global financial crisis sample (1980:01-2008:06), Panel C a shorter pre-

crisis sample (1990:01-2008:06), and Panel D shows results from a sample spanning the period

after the crisis (1990:01-2019:12).

Liquidity Yields. We also document that the significant relationship between the relative

slope and ERRP at business-cycle horizons is robust to controlling for liquidity (or convenience)

yields (i.e., non-pecuniary returns), which recent contributions to the literature have emphasised

a role for in exchange rate determination (see, e.g., Engel andWu, 2022; Jiang et al., 2021). To do

this, we use data on the term structure of liquidity yields from Du et al. (2018). These measure

the difference between riskless market rates and government yields at different maturities to

quantify the implicit yield on a government bond, correcting for other frictions in forward

markets and sovereign risk. Let ηRj,t,κ denote the κ-horizon liquidity premium for a κ-horizon US

government bond relative to an equivalent-maturity Foreign government bond yield in country

j. An increase in ηRj,t,κ reflects an increase in the relative liquidity of US Treasuries vis-à-vis

country j. With these measures, we extend regression (6) by estimating:6

y
(κ)
j,t,h = γ

(κ)
1,h

(
S∗
j,t − St

)
+ γ

(κ)
2,hηj,t,κ + f

(κ)
j,h + ε

(κ)
j,t+h (8)

6Although the Du et al. (2018) data is available from 1991:04 for some countries and tenors, some series begin
as late as 1999:01 due to data availability.
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Table 3: Robustness of relative slope coefficient estimates from regression (6) for rxFX
t,t+h

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Holding Periods h

6m 12m 18m 24m 30m 36m 42m 48m 54m 60m

A: Controlling for interest-rate differentials

SR -0.71 -0.85 -1.22* -1.17** -1.18** -1.01** -0.75** -0.50** -0.36* -0.31
(1.30) (0.98) (0.72) (0.59) (0.49) (0.40) (0.30) (0.24) (0.21) (0.20)

rRh 3.19* 1.31* 0.61 0.36 0.20 0.14 0.11 0.08 0.04 0.00
(1.90) (0.75) (0.40) (0.27) (0.20) (0.15) (0.11) (0.08) (0.06) (0.05)

B: 1980:01-2008:06 sub-sample

SR -2.92*** -2.39*** -2.26*** -1.95*** -1.73*** -1.48*** -1.18*** -0.89*** -0.66*** -0.54***
(0.86) (0.65) (0.51) (0.41) (0.31) (0.24) (0.20) (0.19) (0.19) (0.20)

C: 1990:01-2008:06 sub-sample

SR -2.00** -1.66** -1.68*** -1.49*** -1.34*** -1.16*** -0.92*** -0.67*** -0.48** -0.35*
(0.92) (0.66) (0.51) (0.40) (0.29) (0.21) (0.17) (0.17) (0.19) (0.20)

D: 1990:01-2019:12 sub-sample

SR -1.71* -1.55** -1.53*** -1.32*** -1.17*** -0.96*** -0.68*** -0.41** -0.23 -0.09
(0.88) (0.63) (0.49) (0.39) (0.29) (0.22) (0.19) (0.19) (0.19) (0.18)

E: Controlling for liquidity yields

SR -1.81 -1.80* -1.77** -1.47** -1.48*** -1.37*** -1.02*** -0.65* -0.38 -0.15
(1.60) (1.08) (0.72) (0.60) (0.48) (0.39) (0.37) (0.39) (0.38) (0.35)

ηR
10y 0.07* 0.07** 0.06** 0.07*** 0.07*** 0.07*** 0.07*** 0.07*** 0.07*** 0.07***

(0.04) (0.03) (0.02) (0.02) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01)

Notes: Coefficient estimates on the relative yield curve slope SR
t ≡ S∗ − S from regressions with the (log) ERRP as dependent variable.

Regressions estimated using pooled end-of-month data for 6 currencies (AUD, CAD, CHF, EUR, JPY, GBP) against the USD. Log returns are

annualised. All regressions include country fixed effects. The panel is unbalanced and Driscoll and Kraay (1998) standard errors are reported

in parentheses. ∗, ∗∗ and ∗ ∗ ∗ denote significant point estimates at 10%, 5% and 1% levels, respectively. Regressions in Panel A additionally

include spot-yield differentials rR ≡ r∗h − rh as regressors. Regressions in Panel E additionally control for 10-year liquidity yields ηR
10y as

regressors.

where y
(κ)
j,t,h has the same definition as in regression (6) and γ

(κ)
2,h can be interpreted as the

average influence of a 1pp increase in relative US Treasury convenience. When the ERRP is

the dependent variable, we expect γ
(κ)
2,h to be positive.

The results for current returns rxFX
t,t+h are shown for the 10-year liquidity yield ηR10y in Panel

E of Table 3. As before, the relative slope coefficient is significantly associated with ERRP at

business-cycle holding periods—here 1 to 4 years. Corresponding investigation into the dollar

bond-return differences confirms that the influence of the relative slope on dollar bond returns

predominantly works through ERRP.

Strikingly, the γ
(κ)
2,h coefficients reveal a stronger association between liquidity yields and

ERRP at longer horizons. The coefficients on the relative liquidity yield rise monotonically

with respect to holding periods and grow in significance. This stands in contrast to most

existing studies into liquidity yields and exchange-rate dynamics (e.g., Engel and Wu, 2022;

Jiang et al., 2021), which have focused on short-horizon returns.

Cross-Sectional Returns. To account for returns in the cross-section, we also consider the

average returns across maturities κ and holding periods h from a simple investment strategy

based on the yield-curve slope. Specifically, we consider a strategy that goes long the Foreign

bond and short the US bond when the Foreign yield curve is less steep than the US one, and

vice versa. The results are presented in Appendix C. They demonstrate that average returns
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have a tent-shaped pattern across holding periods, for different maturities, supporting evidence

of the yield curve slope’s predictive role for returns.

4 What Explains Predictability By The Relative Slope?

Having documented a robust association between the relative yield-curve slope and ERRP, we

draw on theory to explain their relationship.

4.1 Preference-Free Setup

Consider a model with two countries: Home (base currency, i.e., US) and Foreign (denoted by

an *), each populated by representative investor—which we later generalize in Section 5.3.

Pricing Kernels and Stochastic Discount Factors. The Home nominal pricing kernel Vt

represents the marginal value of a currency unit at time t. The absence of arbitrage implies

the existence of a nominal SDF Mt,t+κ, which is given by the growth rate of the pricing kernel

between periods t and t+ κ: Mt,t+κ = Vt+κ/Vt.

We assume that investors can trade freely in Home- and Foreign-currency denominated risk-

free bonds across maturities. The price of a Home zero-coupon bond that promises one currency

unit κ periods into the future is given by: Pt,κ = Et [Mt,t+κ] = Et [Mt,t+1Pt+1,κ−1], where Mt,t+1

denotes the one-period SDF and, by recursive substitution, Mt,t+κ ≡
∏κ−1

i=0 Mt+i,t+i+1. Defining

the gross return on a Home κ-period zero-coupon bond as Rt,κ ≡ 1/Pt,κ ≡ (1 + rt,κ) ≥ 1, then:

1

Rt,κ
= Et [Mt,t+κ] (9)

which can be expanded as:

−rt,κ = Et[mt,t+κ] + Lt(Mt,t+κ), (10)

where mt,t+κ = lnMt,t+κ and Lt (Mt,t+κ) = lnEt[Mt,t+κ] − Et[mt,t+κ] denotes the conditional

multi-period entropy of the SDF.7 Foreign expressions are analogously derived.

Exchange Rates and Currency Risk Premia. The exchange rate Et is defined as the

Foreign price of a unit of Home currency such that an increase corresponds to a Foreign de-

preciation. When engaging in cross-border asset trade, the Euler equation for a Home investor

holding a κ-period Foreign currency-denominated bond is:

1 = Et

[
Mt,t+κ

Et
Et+κ

R∗
t,κ

]
(11)

7If we assume one-period SDFs, M
(∗)
t,t+1 are log-normally distributed, then (10) evaluated at κ = 1 is equivalent

to: −rt = Et[mt,t+1] +
1
2
vart (mt,t+1). However, multi-period SDFs (κ > 1) will generally not be log-normally

distributed if risk is heteroskedastic.
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By no-arbitrage, the change in the nominal exchange rate corresponds to the ratio of SDFs:

Et+κ

Et
=

Mt,t+κ

M∗
t,t+κ

eηt,t+κ (12)

for all κ > 0, where ηt,t+κ is the log incomplete-markets wedge as defined in Backus et al. (2001),

such that ηt,t+κ = 0 characterizes complete markets.

The (log) κ-period ex-ante currency risk premium Et[rx
FX
t,t+κ] can be written as the difference

in entropy of the Home and Foreign SDFs:

1

κ
Et

[
rxFX

t,t+κ

]
=

1

κ

(
r∗t,κ − rt,κ −Et [∆

κet+κ] +Et[ηt,t+κ]
)

=
1

κ

(
Lt (Mt,t+κ)− Lt

(
M∗

t,t+κ

)
+Et[ηt,t+κ]

)
(13)

This is the multi-period generalization of the standard one-period UIP return (e.g., Engel, 2016).

Transitory-Permanent Risk Decomposition. As a first pass, to assess the nature of risks

driving ERRP and the yield-curve slope, we use the Alvarez and Jermann (2005) decomposition

of the pricing kernel Vt into a permanent component V P
t and a transitory component V T

t :

Vt = V P
t V

T
t , where V T

t = lim
κ→∞

δt+κ

Pt,κ
(14)

where the constant δ is chosen to satisfy the regularity condition: 0 < limκ→∞ Pt,κ/δ
κ < ∞ for

all t. A pricing kernel Vt is defined as having only transitory innovations if limκ→∞
Et+1[Vt+κ]
Et[Vt+κ]

= 1.

So, its permanent component follows a martingale, defined by: V P
t = limκ→∞

Et[Vt+κ]
δt+κ .

The key result is that the return on an infinite-maturity bond can be written as a func-

tion of transitory innovations to SDFs only: Rt,∞ = limκ→∞Rt,κ = V T
t /V T

t+1 = 1/MT

t,t+1 =

exp(−mT
t,t+1), where mT

t,t+1 denotes the transitory component of the SDF. In contrast, one-

period bond returns, defined by equation (9), depend on both transitory and permanent inno-

vations to SDFs.

Returning to currency premia, the failure to reject long-horizon UIP requires equation (13)

to be approximately zero as κ → ∞ and this implies the equalization of the entropy of perma-

nent SDF components since limκ→∞
1
κMt,t+κ = V Pt+1/V

P
t = MP

t,t+1 (see Lustig et al., 2019).8

Consequently, short and medium-horizon ERRP must reflect cross-country differences in the

volatility of transitory innovations to SDFs.

1

κ
Et

[
rxFX

t,t+κ

]
≈ 1

κ

(
Lt

(
MT

t,t+κ

)
− Lt

(
MT ∗

t,t+κ

))
(15)

8Alvarez and Jermann (2005) emphasize that to jointly rationalize high equity premia and low bond premia,
most SDF volatility must arise from permanent SDF innovations. The contrast in exchange-rate markets may
arise due to horizon-varying risk transmission across countries.
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4.2 Yield-Curve Slope and Transitory Risk

As well as playing a role in short-to-medium-horizon ERRP, transitory risk is reflected in the

yield-curve slope. Define the (log) excess return from buying a n-period Home bond at time

t for price Pt,n = 1/Rt,n and selling it at time t + 1 for Pt+1,n−1 = 1/Rt+1,n−1 as rx
(n)
t,t+1 =

pt+1,n−1 − pt,n − yt,1, where pt,n ≡ log(Pt,n) and yt,n ≡ − 1
npt,n ≡ 1

nrt,n is the annualised yield

on a n-period bond. Assuming, for convenience, SDFs and prices are jointly log-normally

distributed, this excess return can be written as:

Et

[
rx

(n)
t,t+1

]
+

1

2
vart (rt+1,n) = −covt

(
mTt,t+1,Et+1

n−1∑
i=1

mTt+i,t+i+1

)
(16)

Over long enough samples, this risk premium is approximately equal to the yield-curve slope,

Et[rx
(n)
t,t+1] ≈ St where St ≡ yt,n − yt,1, implying that the yield curve will be upward sloping on

average if the covariance term is negative (Piazzesi and Schneider, 2007).9

Two key implications follow from (16). First, the bond premium, and therefore the yield-

curve slope, only captures transitory innovations to investors’ SDFs. The autocovariance of

SDFs will be zero for permanent SDF innovations. Second, because the autocovariance must

be negative to generate yield curves that slope upwards on average, the premium and slope

reflect the time dependence of SDFs. The bond premium is positive if today’s one-period

SDF is negatively correlated with expected future marginal utility, consistent with a notion of

transitory ‘business-cycle’ risk. That is, if households receive relatively good news about the

distant future, they expect to value consumption less at long horizons (i.e., lower Et[mt+i,t+i+1]

for some i > 0), but relatively highly in the near term (i.e., higher mt,t+1). Therefore, the

relative yield-curve slope S∗
t −St can be understood to capture asymmetry or asynchronicity in

business-cycle risk across countries.

4.3 Empirical Links Between Macro Expectations, Relative Slope and ERRP

Next, we use macro survey data to investigate the extent to which asymmetries in business-cycle

expectations drive the relationship between the relative yield-curve slope and ERRP.

4.3.1 Expectations and the Yield-Curve Slope

The links between country-specific yield-curve slopes and macroeconomic outcomes have been

widely studied (e.g., Estrella and Hardouvelis, 1991; Estrella and Mishkin, 1998; Estrella, 2005).

Here, we investigate the relationship between relative yield-curve slopes across countries and

relative business-cycle expectations using data from professional forecasters working at large

financial institutions from Consensus Economics.

Specifically, we use forecasters expectations for GDP growth and inflation in each country

9To derive this, re-write the excess return rx
(n)
t,t+1 as: pt+1,n−1 − pt,n − yt,1 = nyt,n − (n− 1)yt+1,n−1 − yt,1 =

yt,n − yt,1 − (n − 1)(yt+1,n−1 − yt,n). Over a long enough sample and with large n, the difference between the

average (n− 1)-period yield and the average n-period yield is zero, implying that Et[rx
(n)
t,t+1] ≈ yt,n − yt,1 ≡ St.
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Table 4: Association between relative yield curve slope and relative business-cycle expectations

(1) (2) (3) (4)

gdp
0,e

-0.4006*** -0.3204*** -0.2446***
(0.0910) (0.0880) (0.0753)

gdp
1,e

0.5734*** 0.4172*** 0.3715***
(0.1566) (0.1606) (0.1396)

cpi
0,e

-0.3865*** -0.3828*** -0.2709***
(0.0984) (0.1062) (0.0940)

cpi
1,e

-0.4413*** -0.2896** -0.2962**
(0.1326) (0.1245) (0.1329)

std(gdp0,e) -0.3530
(0.4798)

std(gdp1,e) 0.3086
(0.4192)

std(cpi0,e) 0.9720*
(0.4953)

std(cpi1,e) 1.0374**
(0.4097)

Constant -0.6450*** -1.0956*** -1.0307*** -0.8349***
(0.1651) (0.1469) (0.1801) (0.1572)

# Countries 6 6 6 6
Country FE YES YES YES YES
Within R2 0.107 0.159 0.220 0.216

Notes: Coefficient estimates from variants of regression (17), with the relative yield curve slope
as the dependent variable. Regressions estimated using pooled end-of-month data for 6 countries
(with currencies: AUD, CAD, CHF, EUR, JPY, GBP) against the US. All regressions include
country fixed effects. The panel is unbalanced and Driscoll and Kraay (1998) standard errors
are reported in parentheses. ∗, ∗∗ and ∗ ∗ ∗ denote significant point estimates at 10%, 5% and
1% levels, respectively.

for the period over which data is available for all G7 economies (1990:01-2019:12). The fore-

casts are formed for the current year (y = 0) and the next year (y = 1). We denote the average

expectations of country-j forecasters for year-y GDP and inflation by gdp
y,e
j,t and πy,e

j,t , respec-

tively. We also use data capturing uncertainty around forecasts, labelling the cross-sectional

standard deviation of GDP and inflation expectations, across forecasters, by std(gdpy,e)j,t and

std(πy,e)j,t, respectively.

We illustrate the link between relative business-cycle expectations and the relative yield

curve slope by estimating variants of the following regression:

S∗
j,t − St =

∑
y=0,1

[
ϑ1

(
gdp

y,e∗
j,t − gdp

y,e
US,t

)
+ ϑ2

(
πy,e∗
j,t − πy,e

US,t

)
+ ϑ3 (std(gdp

y,e∗)j,t − std(gdpy,e)US,t) + ϑ4 (std(π
y,e∗)j,t − std(πy,e)US,t)

]
+ fj + ϵj,t (17)

Table 4 presents the estimated coefficients. The coefficients on average expectations for

GDP and inflation, for the current and next year, are strongly significant in all specifications.

The mean GDP-expectation coefficient changes sign across horizon, reflecting business-cycle
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dynamics. The coefficient on the current-year expectation indicates that relatively high near-

term GDP-growth expectations are associated with a relatively flat yield curve—consistent

with higher short-term rates in booms. In contrast, relatively high expectations for future

GDP growth are associated with a relatively steep yield curve—consistent with expectations of

higher short-term interest rates in the future. The coefficients on mean inflation expectations

are negative at both horizons, possibly indicating lower-frequency dynamics through price ex-

pectations: relatively high inflation expectations are associated with a relatively flat yield curve,

consistent with a need for higher short-term interest rates to stave off persistence in the rate

of price increases. In addition, column (4) highlights some role for uncertainty about inflation

in yield curve slopes, with relatively high uncertainty associated with a relatively steep yield

curve slope—a feature that is consistent with inflation risk leading nominal bonds to command

a term premium. All in all, the four specifications demonstrate a strong association between

asymmetries in business-cycle expectations and the relative yield-curve slope across countries,

which is also consistent with theory.

4.3.2 Expectations and Excess Currency Returns

To reconnect movements in exchange rates to fundamentals, we test whether the component of

the relative slope explained by business-cycle expectations is the main driver of ERRP dynamics

at business-cycle horizons. To do so, we recover fitted values ŜR
j,t ≡ ̂S∗

j,t − St and residuals ϵ̂j,t

from estimates of equation (17). We construct the fitted values and residuals by estimating

equation (17) on a country-by-country basis, in order to account for cross-country heterogeneity.

Pooling these estimates across countries, we then estimate variants of the following extension

to regressions (6) and (7):

y
(κ)
j,t,h = γ

(κ)
1,h

(
r∗j,t,h − rt,h

)
+ γ

(κ)
2,h Ŝ

R
j,t + γ

(κ)
3,h ϵ̂j,t + f

(κ)
j,h + ε

(κ)
j,t+h (18)

where we replace the observed relative slope S∗
j,t−St with the fitted value ŜR

j,t and additionally

include the residual ϵ̂j,t, which captures the component of the relative slope which is unexplained

by variation in macroeconomic expectations.10

Table 5 presents the results from the regression above excluding spot-yield differentials

(Panel A) and including them (Panel B). In either case, the coefficient on the fitted relative

slope is significantly negative across similar holding periods to the baseline regressions involving

observed relative yield-curve slopes(6) and (7). Panel B can be understood as a spanning

regression, in the spirit of Joslin et al. (2014) indicating that the component of the relative

slope explained by cross-country asymmetries in macroeconomic expectations has explanatory

power for ERRP, orthogonal to interest rates.

Figure 5 plots the γ2,h and γ3,h estimates from the regression that includes the spot-yield

differential. While the coefficient estimates on the residual are insignificant across holding peri-

10The inclusion of the fitted residual ϵ̂ alongside the fitted value ŜR from regression (17) additionally deals
with concerns about inference with generated regressors. Pagan (1984) shows that consistent inference is possible
with generated regressors when fitted values and residuals are used together in the same regression specification.
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Table 5: Estimated relationship between ERRP and the component of relative slope driven by
business-cycle expectations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Holding Periods h

6m 12m 18m 24m 30m 36m 42m 48m 54m 60m

A: Relative yield-curve slope terms only

ŜR -3.67*** -3.13*** -2.61*** -2.22*** -1.96*** -1.60*** -1.26*** -0.82** -0.47 -0.28
(1.27) (0.99) (0.80) (0.76) (0.66) (0.56) (0.45) (0.38) (0.33) (0.32)

ϵ̂ -1.05 -1.09 -1.12** -0.90** -0.73** -0.51** -0.20 0.03 0.13 0.18
(1.09) (0.77) (0.56) (0.45) (0.35) (0.25) (0.21) (0.22) (0.21) (0.19)

B: Controlling for relative interest-rate differentials

ŜR -1.84 -1.53 -1.34 -1.31* -1.39** -1.19** -0.89* -0.55 -0.32 -0.25
(1.55) (1.05) (0.83) (0.76) (0.65) (0.58) (0.47) (0.39) (0.37) (0.36)

ϵ̂ 0.97 0.68 0.28 0.10 -0.13 -0.09 0.17 0.31 0.29 0.21
(1.40) (0.97) (0.73) (0.60) (0.51) (0.41) (0.31) (0.29) (0.26) (0.25)

rRh 3.37* 1.63*** 0.97*** 0.58** 0.32* 0.21 0.18 0.13 0.07 0.01
(1.84) (0.62) (0.35) (0.25) (0.19) (0.15) (0.11) (0.09) (0.08) (0.07)

Notes: Coefficient estimates on the fitted relative yield curve slope ŜR
t and residual ϵ̂, estimated from regression (17), with the (log)

ERRP as dependent variable. Regressions estimated using pooled end-of-month data for 6 currencies (AUD, CAD, CHF, EUR, JPY,

GBP) against the USD. Log returns are annualised. All regressions include country fixed effects. The panel is unbalanced and Driscoll

and Kraay (1998) standard errors are reported in parentheses. ∗, ∗∗ and ∗ ∗ ∗ denote significant point estimates at 10%, 5% and 1%

levels, respectively.

Figure 5: Estimated coefficients for fitted relative slope and residual from ERRP regressions
across holding periods when controlling for relative spot-yield differentials
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Notes: γ̂2,h (maroon circles) and γ̂3,h (grey crosses) estimates from regression (18) for exchange-rate risk premia.

Horizontal axis denotes the holding period h in months. Regressions estimated using pooled monthly data for

6 currencies (AUD, CAD, CHF, EUR, JPY, GBP) against the USD from 1980:01 to 2019:12, including country

fixed effects. 95% confidence intervals, calculated using Driscoll and Kraay (1998) standard errors, denoted by

shaded areas/bars around point estimates.

ods in this specification, the fitted relative slope coefficient is significant at 2 to 3-year horizons.

This suggests that movements in the relative yield-curve slope attributable to changes in rel-

ative macroeconomic expectations explain variation in ERRP at these intermediate horizons,

over and above spot-yield differentials.
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5 Implications for International Asset Pricing and ‘Disconnect’

Having shown that asymmetries in business-cycle expectations partly underlie the association

between relative yield-curve slopes and ERRP, we build a minimal model of the term structure

of interest rates and exchange rates which jointly rationalizes the predictability of exchange

rates by the relative yield-curve slope, and the disconnect with interest rates.

5.1 Implied SDF Restrictions From Preference-Free Setup

A key building block for our model is the following restriction on the moments of SDFs implied

by the regression evidence from Sections 2 and 3. We define innovations ϵ̃ such that:

ϵ̃ =
{
ϵ : proj(S∗

t − St|ϵ) > 0 & proj(r∗t,κ − rt,κ|ϵ) = 0 for some κ ≥ 1
}

(19)

This captures the logic that, following an increase in ϵ̃, the relative slope becomes steeper but

interest-rate differentials of some maturity κ are unchanged. What restrictions on the dynamics

of SDFs deliver this within the preference-free setting outlined in Section 4? The Euler (10)

implies that movements in the conditional mean and variance of SDFs must perfectly offset for

these innovations to not drive interest-rate differentials:

proj(Et[mt,t+κ] |ϵ̃t) = −proj(Lt(Mt,t+κ) |ϵ̃t) (20)

At the same time, by equation (16), these innovations must still drive the autocovariance of

the SDF. This restriction is further supported by the fact that the yield curve predicts move-

ments in exchange rates specifically through movements in the ERRP (i.e., proj(Et[∆et.t+κ]|ϵ̃) ≈
−proj(Et[rx

FX
t+κ]|ϵ̃)).11 While a suite of general-equilibrium models can generate a negative rela-

tionship between the mean and variance of SDFs—notably, those with external habits (Campbell

and Cochrane, 1999) and long-run risk (Bansal and Shaliastovich, 2013)—we go onto explain in

Section 5.4 these models do not generally generate the association between the relative yield-

curve slopes and ERRP.

5.2 A Stylized Model of Interest Rates and Exchange Rates

To consider this further, we use a minimal model of the term structure of interest rates and

exchange rates. Our model builds on Backus, Chernov, and Zin (2014) who consider a single

transitory risk factor, denoted by T, which is fully spanned by interest rates. Relative to this,

we extend the model with two (partly) unspanned factors. The first is a permanent factor,

denoted by P, which drives exchange-rate volatility, but is not reflected in the term structure

of interest rates, consistent with Alvarez and Jermann (2005) and Chernov and Creal (2023)

show. The second is an unspanned transitory factor, denoted by d, which we show is necessary

11Hassan, Mertens, and Wang (2024) emphasize the tension between models that generate a negative functional
relationship between the mean and variance of SDFs and the unpredictability of exchange rates. Given that we
are specifically focusing on the predictable component, orthogonal to short rates, our results are consistent.
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for explaining the relationship between ERRP and the relative slope and, in contrast to P, will

appear in the the slope of the yield curve.

Let the (log) one-period SDF of the representative Home investor be given by:

mt,t+1 = mTt,t+1 +mPt,t+1 (21)

We assume the (truncated) Wold decompositions of the transitory and permanent components

can, respectively, be written as:

mTt,t+1 = log β − 1

2
γσ2
T + α0ϵT,t+1 + α1ϵT,t−

1

2
δσ2

d + d0ϵd,t+1 + d1ϵd,t︸ ︷︷ ︸
unspanned transitory factor

(22)

mPt,t+1 =− 1

2
σ2
P + ϵP,t+1 (23)

where ϵi,t denote shocks to risk factors i = T, d,P which we assume are uncorrelated and

σ2
i represent the corresponding constant volatilities. The transitory component is purged of

permanent risk when α0 = −α1 and d0 = −d1.
12 Foreign variables are defined analogously and

denoted with asterisks. We consider a model with symmetric factor loadings αi = α∗
i , but allow

for asymmetry in factor volatilities (i.e., σT ̸= σ∗
i for i = T, d,P). For simplicity, we begin by

assuming internationally complete markets, i.e., equation (12) with ηt,t+κ = 0, but Appendix

D.1.1 shows this does not drive our results. We then analyze comparative statics with respect

to the factor volatilities σ2
i for i = T, d,P.

Combining (10) with (21), the κ-period bond yield can be written as:

−yt,κ = log β +
1

κ

[
(d20 − κδ) + (d1 + d0)

2(κ− 1)
] σ2

d

2

+
1

κ

[
(α2

0 − κγ) + (α1 + α0)
2(κ− 1)

] σ2
T

2
(24)

The short-term interest rate rt = yt,1 is inversely related to volatility as long as α2
0−γ > 0 (i.e.,

precautionary savings motives dominate), consistent with models of habits and long-run risk

(e.g., Engel, 2016). This generates the correct sign for UIP deviations, since excess returns to

Foreign currency are positive when Home volatility is high.

Critically, choosing δ = d20 will impose (20) for n = 1, such that σd is not reflected in the

short-term rate. However, it is still captured in the yield-curve slope, S
(κ)
t = y

(κ)
t − rt:

St =

(
1− 1

κ

)[
d20 − (d1 + d0)

2
] σ2

d

2
+

(
1− 1

κ

)[
α2
0 − (α1 + α0)

2
] σ2

T

2
(25)

This reflects asymmetries in both transitory innovations, but not in permanent innovations, and

so leaving scope for the relative slope to have explanatory power over and above the short rate.

Evaluating (13), the ERRP reflects asymmetries in both transitory and permanent risk

12Alvarez and Jermann (2005) note that in the absence of permanent risk, the bond premium coincides with
half the variance of the SDF, yielding the restrictions above.
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across countries, as well as the hidden factor:

Et[rx
FX
t+κ] =

1

κ

[
d20 + (d1 + d0)

2(κ− 1)
] (σ2

d

2
−

σ∗ 2
d

2

)
+
1

κ

[
α2
0 + (α1 + α0)

2(κ− 1)
] (σ2

T

2
−

σ∗ 2
T

2

)
+

(
σ2
P

2
−

σ∗ 2
P

2

)
(26)

The following proposition summarizes our key result:

Proposition 1 (Risk, Bond Yields and ERRP) Only an increase in the volatility of the

hidden transitory factors (σd) is associated with a relatively steeper yield-curve slope and a

higher ERRP, without being reflected in interest-rate differentials.

Proof: Follows directly by using (24), imposing δ = d20, and then comparing with (25) and

(26).

More generally, the model implies that as the prominence of P-risk rises (i.e., σP
σT+σd+σP

↑),
the relationship between either yields or yield curves and the ERRP becomes less pronounced,

with the R2 of a regressions (1) or (2) approaching 0 in the limit. In contrast, the opposite is

true as T-risk becomes more important ( σP
σT+σd+σP

↑). However, only as d-risk rises ( σd
σT+σd+σP

↑)
does the yield curve become an important explanatory variable for ERRP that is orthogonal to

yield differentials.

Below, we consider an illustrative three-horizon example (short-, medium- and long-run)

where the predictability of the cross-country yield-curve slope is highest in the medium horizon,

recalling our empirical findings. To this end, we generalize the framework such that the choice

of δ imposes (20) for κ > 1, which ensures risk σd is unspanned in longer-maturity interest

rates. Then, short-term rates can have some predictive power over exchange rates in line with

the UIP puzzle.13 The following proposition summarizes our key finding:

Proposition 2 (Horizon Variation) Assume: (i) permanent risk is equalized across countries

(σP = σ∗
P
, α0 ≈ −α1, d0 ≈ −d1), and (ii) δ = 1

κ

(
d20 + (d0 + d1)

2(κ− 1)
)
. While a steeper

relative yield-curve slope is associated with higher currency returns at both horizons 1 and κ <

∞, the relative slope reflects proportional information to the spot-yield differential at t+ 1, but

orthogonal information at t+ κ. In the long run, ERRP are zero.

Proof: δ = 1
κ

(
d20 + (d0 + d1)

2(κ− 1)
)
imposes (20) for κ = κ—i.e., at intermediate horizons.

The equalization of the permanent risk factor (σP = σ∗
P
), along with the purging of permanent

risk from the transitory factors (α0 ≈ −α1, d0 ≈ −d1) ensures ERRP are zero in the long-run

and so there is no predictability.

13As shown by Lustig et al. (2019), carry-trade returns at long horizons are zero (and thus unpredictable) if
there are no differences in the permanent innovations of SDFs across countries. Notably, Andrews, Colacito,
Croce, and Gavazzoni (2024) find evidence that rxCT (∞) = 0 only because it is negative before and positive
post-GFC. Consistently, Chernov and Creal (2023) argue the evidence for zero ERRP at long horizons appears
weak, and the power of the test is low.
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5.3 Endogenizing Hidden Factors via Domestically Incomplete Markets

Term-structure models like above are almost exclusively written under complete markets where

there can only exist a unique SDF. We show hidden factors, as above, arise as equilibrium

outcomes in a large class of incomplete-markets models. The generalized model is consistent

with no-arbitrage pricing by the SDF mt+1 (21), but the structure of risk is constrained due

to trade in assets by an additional investor with SDF m̃t+1—ruled out if domestic financial

markets were complete. Our framework relates to models of incomplete markets and limited

participation such as Guvenen (2009) and Marin and Singh (2024), as well as models of preferred

habitat as in Gourinchas et al. (2022) and Greenwood et al. (2023).

Suppose the second investor, with SDF m̃t,t+1, is active in domestic markets, but only trades

in domestic bonds with maturities κ ∈ κ̃. Their SDF is defined by:14

m̃t+1 = log β − 1

2
σ2
T
+ α0ϵT,t+1 + α1ϵT,t

Critically, both investors mt+1 and m̃t+1 trade in the risk-free bonds of maturities in κ̃ which

imposes tight restrictions on the structure of risk, summarized in the following proposition:

Proposition 3 (Incomplete Markets and Hidden Factors) Suppose κ̃ = 1 such that only

the risk-free rate is traded by both m and m̃. No arbitrage requires δ = d20. More generally, for

any κ ∈ κ̃ maturity traded, condition (ii) from Proposition 2 is required to satisfy no-arbitrage.

Proof: Consider the set of conditions E[Mt,t+κ] = E[M̃t,t+κ] = 1/R
(κ)
t ∀ κ ∈ κ̃ which reflect

risk-sharing between agents at horizon κ̃. Once again, under complete markets κ̃ = R, which
implies the mean (and variance) of all multi-horizon SDFs is equalized.

Intuitively, bonds traded by both investors only price risks which both investors face and

agree upon. In the spirit of preferred-habitat models, ϵd,t+1 can reflect investor-specific demand

shocks, which drive both the term structure of interest rates and exchange rates. Since m̃t+1

does not face these habitat shocks, the only equilibrium consistent with no arbitrage requires δ

such that (20) holds.

Heterogeneous Expectations. Alternatively, domestic market incompleteness may arise

because investors have heterogeneous expectations over the same fundamentals. To consider

this, define a new subjective expectation operator Ẽt, distinct from the objective expectations

above, such that:

Et[ϵ
2
d,t+1] = σ2

d, Ẽt[ϵ
2
d,t+1] = (1− ω)σ2

d, ω < 1 (27)

and, for simplicity, assume m̃t+1 is given by (22) with−1
2δσ

2
d replaced by−1

2δσ
2
d(1−ω). Investors

agree on risks in the limit ω̃ → 0, and markets are de-jure complete. In contrast, as ω → 1, the

second investor underestimates the d-factor and their SDF converges to (27). In this case, the

14Notice this is a normalization. More generally, we can consider mi
t,t+1 = log(Di

t,t+1Mt,t+1) and interpret the
expectations above as cross-sectional (see also Constantinides and Duffie, 1996; Marin and Singh, 2024).
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only admissible equilibrium with trade in the one-period bond (κ̃ = 1) has a hidden factor, per

Proposition 3.

5.4 A Dynamic Asset-Pricing Model

Finally, we show our results generalize to a canonical dynamic asset-pricing model with stochas-

tic volatility, building on a two-country version of the Cox et al. (1985) model, studied in Backus

et al. (2001) and Lustig et al. (2019), amongst others. We relegate details and derivations to

the Appendix D.2.

Consider a representative Home investor’s SDF which loads on three independent country-

specific factors z0,t, z1,t, z2,t:

−mt,t+1 = z0,t + (λ2
1/2− 1)z1,t + λ1

√
z1,tϵt+1 + (λ2

2/2)z2,t + λ2
√
z2,tϵ2,t+1, (28)

zi,t+1 = (1− ϕi)z2,t + ϕizi,t − σi
√
zi,tϵi,t+1, for i ∈ {0, 1}

z2,t+1 = (1− ϕ2)θ + ϕ2z2,t − σ2
√
z2,tϵ2,t+1

where λ1, λ2 < 0 are coefficients which capture the price of risk with respect to each factor.15,16

For simplicity, z0,t has a zero price of risk. We assume that the representative Foreign investor’s

SDF m∗
t,t+1 and country-specific pricing factors z∗i,t are defined analogously, and with symmetric

coefficients (λ∗
i = λi, ϕ

∗
i = ϕi, and σ∗

i = σi).

Assuming log-normality, combining (28) and the expression for the (log) price of an n-

period bond, pt,n = Et[mt,t+1 + pt+1,n−1] + (1/2)vart(mt,t+1 + pt+1,n−1), we can write the the

(log) bond price as an affine function of pricing factors pt,n = − (Ωn +Anz0,t +Bnz1,t + Cnz2,t),

where Ωn, An, Bn and Cn are recursively defined.

Term Structure. An immediate consequence is that short rates are given by r
(∗)
t = z

(∗)
0,t −

z
(∗)
1,t and are countercyclical with respect to z1 implying Bn < 0, consistent with Verdelhan

(2010). Absent additional factors, this counterfactually implies a negative average slope of the

yield curve and bond premium (Wachter, 2006) and increasingly negative longer-horizon UIP

deviations (Lustig et al., 2019). The ex ante bond risk premium is given by:

Et

[
rx

(∞)
t,t+1

]
+

1

2
vart(rn,t+1) =− covt(pt+1,n−1,mt,t+1)

=−λ1σ1Bn−1︸ ︷︷ ︸
<0

z1,t − λ2σ2Cn−1z2,t (29)

and additionally depends on ϵ2,t which is hidden from rt.

15A negative price of risk is required in the one-factor model (Backus et al., 1998) and two-country multi-factor
models (Backus et al., 2001; Lustig and Verdelhan, 2019).

16This setup resembles the the model of central tendency in Balduzzi et al. (1998) where z2,t captures the long-
run mean of the short rate. Ang and Chen (2010) provide direct evidence for the importance of a time-varying
long run mean. Kozicki and Tinsley (2001) identify monetary policy and long run expectations as a good proxy
for z2,t, providing a supporting economic interpretation of this factor.
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Hidden Factors in CIR. Once again, the SDF (28) can be understood as an equilibrium

outcome from an incomplete markets model. Define a SDF m̃t,t+1 which is identical to mt,t+1

except that it does not depend on z2,t, i.e. λ̃2 = 0. Then if both investors trade the short bond,

no-arbitrage requires C0 = 0, which is satisfied in the model above. More generally, one can

express the model with a conditional mean of (λ2
1/2− 1)z1,t + (λ2

2/2 + ζ)z2,t. Then, ζ must be

0 to satisfy no arbitrage. Critically, however, there are additional requirements for subsequent

Cn to be non-zero, specific to the dynamic model, and detailed below.

Proposition 4 (Bond Yields and ERRP in CIR) In the model described by (28), a relatively

steep Home yield-curve slope (St > S∗
t ) can be associated with higher future ERRP (rxFX

t,t+κ),

orthogonal to short-rate differentials, only if the loading on z2,t is positive at longer maturities

(Cn > 0) which, in turn, requires z0,t to tend to z2,t.

Proof: Assuming λ1, λ2 < 0, and given that Bn−1 < 0, (29) delivers a positive bond premium

only if Cn−1 > 0 for n > 1. Given C0 = 0 so that z2,t is unspanned in risk-free rates, inspecting

the recursion for Cn, Cn−1 > 0 is only possible because E[z0,t+1] = z2,t.

The sufficient condition to deliver a positive yield-curve slope requires z2,t to be persistent

(ϕ2 > ϕ1), which can also rationalize why the relative yield-curve slope especially matters at

intermediate (as opposed to short or long) horizons.17 In the short run, if |λ2| < |λ1|, the short-
rate differential can be a good predictor of ERRP since the hidden factor is less important.

However, due to differences in the persistence of factors and the central tendency, the relative

slope becomes an orthogonal predictor of future and longer horizon ERRP. ERRP and its

predictability will approach zero asymptotically if permanent innovations are ruled out.

6 Conclusion

Overall, our paper highlights that a significant component of currency fluctuations and ERRP,

at business-cycle horizons in particular, can be explained by cross-country differences in the term

structure of interest rates. Preference-free results derived assuming no-arbitrage suggest this is

driven by cross-country differences in the autocorrelation of investor valuations (SDFs) across

countries, consistent with a notion of transitory business-cycle risk. Driven by this insight, we

find evidence that survey data on expectations for GDP and inflation explain relative yield-curve

slopes. In turn, regressing exchange-rate movements on the fitted component of the relative

yield-curve slope, we find that cross-country asymmetries in macroeconomic expectations are a

significant determinant of ERRP, orthogonal to interest rates, especially at 2 to 4-year horizons.

In addition to finding evidence that currency fluctuations reflect expectations of macroeco-

nomic fundamentals, we illustrate the importance of transitory factors which can be ‘hidden’

from short-term interest rates because of offsetting effects on the conditional mean and variance

of SDFs. As such, these factors are consistent with the literature on the exchange-rate ‘dis-

connect’, while also being captured by the yield-curve slope. Going a step further, we propose

17We generalize the SDF process to allow factors to be hidden from longer maturities and provide details in
Apppendix D.2.1.
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market incompleteness as a plausible mechanism by which hidden factors arise as endogenous

outcomes in equilibria with trade.

While our results further the understanding of exchange rates within standard modelling

frameworks, a limitation of our analysis is that there appears to be little scope for forecasting.

This is predominantly because the relationship we document between the relative yield-curve

slope and ERRP spans longer horizons, compounding forecast errors. Additionally, while our

theoretical framework speaks to ex ante ERRP, our regressions use realized currency moves

because of the lack of longer-horizon market-based forecasts.
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Appendix

A Data Sources

We use nominal zero-coupon government bond yields at maturities from 6 months to 10 years

for 7 industrialised countries: US, Australia, Canada, Euro Area, Japan, Switzerland and UK.

Our benchmark sample spans 1980:01-2019:12, although the panel of interest rates is unbal-

anced as bond yields are not available from the start of the sample in all jurisdictions. Table

A1 summarises the sources of nominal zero-coupon government bond yields, and the sample

availability, for the benchmark economies in our study.

Table A1: Yield Curve Data Sources

Country Sources Start Date

US Gürkaynak, Sack, and Wright (2007) 1971:11

Australia Reserve Bank of Australia 1992:07

Canada Bank of Canada 1986:01

Euro Area Bundesbank (German Yields) 1980:01

Japan Wright (2011) and Bank of England 1986:01

Switzerland Swiss National Bank 1988:01

UK Anderson and Sleath (2001) 1975:01

Notes: Data from before 1980:01 are not used in this paper.

Exchange rate data is from Datastream, reflecting end-of-month spot rates vis-à-vis the

US dollar. Liquidity yields are from Du et al. (2018), available at the 1, 2, 3, 5, 7 and 10-year

maturities. The earliest liquidity yields are available from 1991:04 for some countries (e.g. UK).

The latest liquidity yields are available from 1999:01 (e.g. euro area). For both exchange rates

and liquidity yields, we use end-of-month observations.
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B Robustness: Exchange Rates and the Yield Curve Slope

B.1 Full Results from UIP and Yield Curve-Augmented Regressions

Table B1 tabulates our benchmark results for regressions (1) and (2), which are discussed in

Section 2. Columns (1)-(2) present the β1,κ estimates and within R2 statistics, at different

horizons, from the canonical UIP regression. Columns (3)-(5) present β1,κ and β2,κ estimates,

along with the within R2 from the slope-augmented regression.

B.2 Robustness Results for Yield Curve-Augmented Regressions

We discuss each robustness exercise in turn.

Relative Curvature. Adding a proxy for the relative curvature to regression (2) does not

significantly alter conclusions around the relative yield-curve slope, as columns (1)-(4) of Table

B2 show. There remains a tent-shaped relationship on relative slope coefficients across horizons.

The relative curvature coefficient has a negative tent-shaped relationship across horizons, but

this finding is not robustly significant.18

Predictability of Interest Rates. The inclusion of interest rates in specification (2) poses a

potential challenge, as interest rates are persistent and have a factor structure that is a function

of the yield-curve slope. To ensure that the relationship between the slope and ERRP is not

driven by the predictability of, and correlation with, interest rates, we also estimate a simple

regression of exchange-rate changes on the relative slope, omitting return differentials. These

results, shown in columns (5)-(6) of Table B2, as well as a specification where we include the

relative yield curve level alongside slope (and curvature) as in Chen and Tsang (2013), indicate

that the tent-shaped relationship across horizons is robust to these changes.

Sub-Sample Stability. Our main results are robust to splitting the sample into two sub-

periods, as columns (7)-(10) of Table B2 show. First, a pre-global financial crisis sample

(1980:01-2008:06), which excludes the period in which central banks engaged in unconventional

monetary policies. Second, a sample covering the post-crisis period (1990:01-2019:12), in which

there was a crash in carry trade around 2008 and a switch in UIP coefficients (Bussière, Chinn,

Ferrara, and Heipertz, 2022) where there still exists a significant relationship with the relative

yield-curve slope, but it is shifted to later horizons.

Long-Horizon Inference. In long-horizon variants of regressions (1) and (2), the number

of non-overlapping observations can be limited. Therefore, size distortions—i.e. the null hy-

pothesis being rejected too often—are a pertinent concern, especially with small samples and

persistent regressors (Valkanov, 2003). To carry out more conservative inference, we draw on

18Using more conservative standard errors, described in the subsequent ‘Long-Horizon Inference’ paragraph, we
do not find a significant relationship between exchange rate changes and the relative curvature across horizons.
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Table B1: Coefficient estimates from canonical UIP regression and regression augmented with
relative yield curve slope

(1) (2) (3) (4) (5)
Maturity UIP Regression Slope-Augmented Regression
κ r∗κ − rκ Within R2 r∗κ − rκ S∗ − S Within R2

6 months -1.31* 0.0191 -0.89 0.29 0.0197
(0.74) (1.14) (0.71)

12 months -1.29** 0.0323 -0.83 0.62 0.0341
(0.57) (0.90) (1.07)

18 months -1.21** 0.0385 -0.39 1.65 0.0494
(0.49) (0.72) (1.19)

24 months -0.99** 0.0308 -0.14 2.21* 0.049
(0.42) (0.65) (1.32)

30 months -0.77** 0.0222 0.13 2.92** 0.0528
(0.35) (0.59) (1.38)

36 months -0.54* 0.013 0.27 3.16** 0.0492
(0.31) (0.51) (1.30)

42 months -0.25 0.0033 0.38 2.92*** 0.0354
(0.30) (0.41) (1.08)

48 months 0.03 0.0001 0.49 2.45** 0.023
(0.28) (0.33) (0.96)

54 months 0.36 0.0085 0.73*** 2.25** 0.0285
(0.24) (0.26) (0.95)

60 months 0.61*** 0.0261 0.94*** 2.31** 0.0468
(0.23) (0.24) (1.05)

66 months 0.83*** 0.052 1.14*** 2.46** 0.0755
(0.21) (0.23) (1.11)

72 months 1.00*** 0.0815 1.25*** 2.35** 0.103
(0.18) (0.19) (1.04)

78 months 1.04*** 0.096 1.22*** 1.96** 0.111
(0.15) (0.17) (0.91)

84 months 1.00*** 0.0965 1.12*** 1.56* 0.106
(0.15) (0.16) (0.86)

90 months 0.91*** 0.0866 0.99*** 1.12 0.0916
(0.15) (0.16) (0.87)

96 months 0.77*** 0.067 0.81*** 0.55 0.0682
(0.15) (0.16) (0.86)

102 months 0.61*** 0.0436 0.61*** -0.02 0.0436
(0.15) (0.16) (0.94)

108 months 0.47*** 0.027 0.44*** -0.61 0.0284
(0.15) (0.16) (1.02)

114 months 0.42*** 0.022 0.38** -0.86 0.0246
(0.15) (0.16) (1.07)

120 months 0.42*** 0.0233 0.37** -1.23 0.0286
(0.15) (0.16) (1.11)

Notes: Columns (1)-(2) present results from canonical UIP regression (1), a regression of κ-period exchange-rate change

∆κet+κ on the κ-period return differential r∗t,κ − rt,κ. Columns (3)-(5) present results from extended regression (2),

using relative yield-curve slope S∗
t − St as an additional regressor. Regressions estimated using pooled end-of-month

data for 6 currencies (AUD, CAD, CHF, EUR, JPY, GBP) against the USD from 1980:01 to 2019:12, including country

fixed effects. The panel is unbalanced. ∗, ∗∗ and ∗ ∗ ∗ denote statistical significance at the 10%, 5% and 1% levels,

respectively, using Driscoll and Kraay (1998) standard errors (reported in parentheses).
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Table B2: Robustness of coefficient estimates from augmented UIP regressions

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Slope & Curvature-Aug. Reg. Slope Only Pre-GFC Post-GFC

r∗κ−rκ S∗ − S C∗ − C Within
R2

S∗−S Within
R2

r∗κ−rκ S∗−S r∗κ−rκ S∗ − S

6 months -0.85 0.62 -0.62 0.0212 0.77* 0.0177 -1.01 0.54 0.12 0.35
(1.14) (0.77) (0.77) (0.45) (1.56) (0.92) (1.22) (0.62)

12 months -0.70 1.22 -0.95 0.0358 1.41** 0.0300 -0.68 0.93 -0.84 -0.18
(0.88) (1.24) (1.08) (0.66) (1.21) (1.41) (0.81) (0.78)

18 months -0.21 2.59* -1.46 0.0521 2.13*** 0.0479 -0.02 2.04 -0.77 0.21
(0.73) (1.49) (1.23) (0.79) (0.96) (1.58) (0.68) (0.95)

24 months 0.12 3.90** -2.62 0.0556 2.42*** 0.0487 0.26 2.74 -0.54 0.61
(0.66) (1.75) (1.66) (0.87) (0.84) (1.72) (0.62) (1.13)

30 months 0.42 5.05*** -3.36* 0.0621 2.71*** 0.0525 0.51 3.55** -0.16 1.40
(0.60) (1.83) (1.94) (0.85) (0.77) (1.77) (0.53) (1.22)

36 months 0.52 5.31*** -3.46* 0.0583 2.69*** 0.0475 0.51 3.61** -0.07 1.58
(0.55) (1.76) (1.80) (0.79) (0.68) (1.70) (0.43) (1.16)

42 months 0.67 5.70*** -4.58*** 0.0505 2.22*** 0.0307 0.51 3.39** 0.01 1.34
(0.45) (1.52) (1.76) (0.77) (0.57) (1.45) (0.32) (0.89)

48 months 0.75** 5.36*** -4.91*** 0.0396 1.53* 0.0138 0.43 2.89** 0.30 1.29
(0.35) (1.24) (1.63) (0.85) (0.46) (1.24) (0.26) (0.85)

54 months 0.92*** 4.77*** -4.37*** 0.0414 0.89 0.00447 0.58 2.63** 0.75*** 1.60
(0.27) (1.21) (1.61) (0.96) (0.36) (1.07) (0.24) (0.97)

60 months 1.05*** 4.02*** -3.04* 0.0528 0.56 0.00166 0.77** 2.76** 1.15*** 1.88*
(0.24) (1.39) (1.70) (1.12) (0.31) (1.14) (0.25) (1.12)

66 months 1.17*** 2.97* -0.91 0.0760 0.38 0.000714 0.97*** 2.90** 1.43*** 2.16*
(0.23) (1.56) (1.90) (1.23) (0.28) (1.20) (0.24) (1.19)

72 months 1.23*** 1.84 0.96 0.104 0.11 6.00e-05 1.08*** 2.54** 1.57*** 2.29*
(0.19) (1.50) (1.83) (1.23) (0.24) (1.14) (0.23) (1.17)

78 months 1.19*** 1.26 1.31 0.112 -0.16 0.000118 1.05*** 2.05* 1.47*** 1.88*
(0.17) (1.46) (1.90) (1.11) (0.21) (1.06) (0.21) (0.99)

84 months 1.09*** 0.53 1.97 0.109 -0.33 0.000500 0.94*** 1.51 1.37*** 1.38
(0.15) (1.56) (2.22) (1.00) (0.21) (1.05) (0.18) (0.87)

90 months 0.95*** -0.35 2.84 0.0963 -0.49 0.00108 0.75*** 0.85 1.26*** 0.87
(0.15) (1.65) (2.32) (0.99) (0.21) (1.02) (0.17) (0.89)

96 months 0.77*** -1.25 3.51 0.0753 -0.71 0.00222 0.52*** -0.07 1.04*** 0.15
(0.15) (1.74) (2.50) (0.94) (0.20) (0.98) (0.18) (0.87)

102 months 0.58*** -1.79 3.47 0.0504 -0.93 0.00366 0.28 -0.83 0.80*** -0.65
(0.15) (1.72) (2.51) (0.99) (0.18) (1.00) (0.21) (0.95)

108 months 0.42*** -2.37 3.48 0.0348 -1.25 0.00621 0.10 -1.47 0.59*** -1.41
(0.15) (1.73) (2.58) (1.04) (0.18) (1.05) (0.22) (1.01)

114 months 0.37** -2.78 3.84 0.0320 -1.39 0.00723 0.08 -1.70 0.46** -1.79*
(0.16) (1.69) (2.66) (1.07) (0.18) (1.10) (0.22) (1.02)

120 months 0.36** -2.97* 3.48 0.0346 -1.73 0.0110 0.11 -1.78 0.39* -2.22**
(0.16) (1.65) (2.75) (1.11) (0.18) (1.15) (0.21) (1.05)

Notes: Columns (1)-(4) present results from UIP regression augmented with relative yield-curve slope and curvature over 1980:01-2019:12

sample. Columns (5)-(6) present results from regression of κ-period exchange-rate change ∆κet+κ on the relative slope only, over 1980:01-

2019:12 sample. Columns (7)-(8) present results from UIP regression augmented with relative yield-curve slope over 1980:01-2008:06 sample.

Columns (9)-(10) present results from UIP regression augmented with relative yield-curve slope over 1990:01-2019:12 sample. Regressions

estimated using pooled end-of-month data for 6 currencies (AUD, CAD, CHF, EUR, JPY, GBP) against the USD, including country fixed

effects. ∗, ∗∗ and ∗ ∗ ∗ denote statistical significance at the 10%, 5% and 1% levels, respectively, using Driscoll and Kraay (1998) standard

errors (reported in parentheses).
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Moon, Rubia, and Valkanov (2004) who propose the scaling of t-statistics by 1/
√
κ, showing

that these scaled statistics are approximately standard normal when regressors are highly per-

sistent.19 As Figure B1 shows, our primary result remains significant when using these more

conservative t-statistics.

Figure B1: Estimated relative-slope coefficients with adjusted standard errors
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Notes: Black curcles denote β̂2,κ estimates from regression (2). Horizontal axes denote the horizon κ in months.

Regressions estimated using pooled monthly data for 6 currencies (AUD, CAD, CHF, EUR, JPY, GBP) against

the USD from 1980:01 to 2019:12, including country fixed effects. 90% confidence intervals, calculated using

Valkanov (2003) and Moon et al. (2004) long-horizon standard errors, denoted by black bars around point

estimates.

B.3 Alternative Currency Bases

The tent-shaped pattern for the relative slope coefficient appears specific to the USD currency

base. This is shown in Table B3, which plots the coefficients on the relative slope when regression

(2) is estimated with each alternative currency base in turn (i.e., AUD, CAD, CHF, EUR,

JPY, GBP). For almost all currencies, the estimated coefficients on the relative are broadly

insignificant at business-cycle horizons, and there is very little sign of a tent-shaped relationship

with positive coefficients across horizons—except for the CHF.

19Because this is an approximate result, these standard errors are not our preferred metric for inference. Indeed,
the scaled t-statistics tend to under-reject the null when regressors are not near-unit root, implying that these
confidence bands offer some of the most conservative inference for our regressions.
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Table B3: Relative slope coefficient from augmented UIP regression using alternative base
currencies

(1) (2) (3) (4) (5) (6)
Base: AUD CAD CHF EUR GBP JPY

S∗ − S S∗ − S S∗ − S S∗ − S S∗ − S S∗ − S
6 months 0.02 0.27 0.69* -0.49 -0.64 0.77

(0.52) (0.38) (0.40) (0.77) (0.64) (0.48)
12 months 0.28 0.60 1.31** -1.19 -0.90 1.33*

(0.73) (0.54) (0.61) (1.27) (0.90) (0.74)
18 months 0.40 0.60 1.86** -1.27 -0.58 1.50*

(0.77) (0.65) (0.74) (1.43) (0.95) (0.91)
24 months 0.35 0.65 2.09*** -1.00 -0.47 1.64

(0.77) (0.70) (0.76) (1.27) (1.01) (1.01)
30 months 0.20 0.35 2.38*** -1.09 -0.36 1.71

(0.82) (0.76) (0.74) (1.14) (1.05) (1.10)
36 months 0.05 -0.23 2.32*** -1.86* -0.63 1.25

(0.89) (0.90) (0.72) (1.12) (1.14) (1.20)
42 months -0.28 -1.24 2.07*** -2.77*** -1.13 0.46

(0.99) (0.96) (0.75) (1.05) (1.23) (1.30)
48 months -0.70 -2.03** 1.37* -3.70*** -1.76 -0.81

(1.01) (0.98) (0.82) (1.01) (1.24) (1.40)
54 months -0.52 -2.43*** 0.58 -3.71*** -1.88* -1.55

(0.97) (0.93) (0.86) (1.08) (1.14) (1.40)
60 months 0.01 -2.25** -0.03 -2.76** -1.78 -1.74

(0.91) (0.94) (0.84) (1.33) (1.16) (1.45)
66 months 0.59 -1.68* -0.52 -1.14 -1.59 -1.21

(0.90) (0.98) (0.80) (1.70) (1.15) (1.50)
72 months 1.07 -1.44 -1.11 0.57 -1.31 -0.55

(0.94) (0.97) (0.73) (1.88) (0.94) (1.47)
78 months 1.30 -0.86 -1.57** 2.02 -1.25 0.54

(1.06) (0.94) (0.72) (1.77) (0.86) (1.36)
84 months 1.54 -0.34 -1.81** 2.91* -0.97 1.97

(1.09) (0.97) (0.75) (1.64) (0.81) (1.21)
90 months 2.00* -0.29 -2.00** 3.27** -0.68 2.58**

(1.09) (0.95) (0.82) (1.53) (0.77) (1.13)
96 months 2.20* -0.74 -2.37*** 3.01** -0.88 2.45**

(1.14) (0.92) (0.85) (1.48) (0.81) (1.10)
102 months 2.29* -1.47 -2.70*** 2.35 -1.16 2.35**

(1.20) (1.01) (0.91) (1.54) (0.90) (1.05)
108 months 2.24* -2.16** -3.25*** 1.63 -1.65* 2.21**

(1.21) (1.10) (0.98) (1.72) (0.89) (1.10)
114 months 1.86 -2.48** -3.58*** 1.41 -2.11** 1.97*

(1.19) (1.19) (1.01) (1.87) (0.84) (1.17)
120 months 1.30 -2.90** -3.91*** 1.14 -2.74*** 1.09

(1.18) (1.26) (1.03) (2.04) (0.90) (1.16)

Notes: Coefficients on relative yield curve slope from extended regression (2), using relative yield-curve

slope S∗
t −St as an additional regressor, for different currency bases. Regressions estimated using pooled

end-of-month data for 7 currencies (AUD, CAD, CHF, EUR, JPY, GBP, USD) from 1980:01 to 2019:12,

including country fixed effects. The panel is unbalanced. ∗, ∗∗ and ∗ ∗ ∗ denote statistical significance

at the 10%, 5% and 1% levels, respectively, using Driscoll and Kraay (1998) standard errors (reported

in parentheses).
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C Robustness: Excess Returns and the Yield-Curve Slope

In Table C1, we present the mean return from a simple investment strategy that goes long the

Foreign bond and short the US bond when the Foreign yield curve slope is lower than the US

yield curve slope, and goes long the US bond and short the Foreign bond when the US yield

curve slope is lower than the Foreign yield curve slope. Relative to Lustig et al. (2019), we

present the mean dollar-bond return differences for a range of holding periods h = 6, 12, ..., 60

and maturities κ = 6, 12, ..., 120 (in months).

Table C1: Mean Excess Returns from Dynamic Long-Short Bond Portfolios

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Holding Periods

6m 12m 18m 24m 30m 36m 42m 48m 54m 60m

Dollar-Bond Return Difference: rx
(κ),$
j,t,t+h − rx

(κ)
US,t,t+h

12m 1.95
18m 1.81 2.48
24m 1.70 2.38 3.04
30m 1.60 2.3 2.98 3.3
36m 1.49 2.21 2.92 3.26 3.30
42m 1.38 2.12 2.85 3.22 3.27 3.08
48m 1.26 2.01 2.76 3.16 3.24 3.06 2.9
54m 1.15 1.91 2.67 3.10 3.20 3.03 2.88 2.57
60m 1.03 1.81 2.58 3.03 3.15 2.99 2.85 2.55 2.30
66m 0.93 1.72 2.49 2.95 3.09 2.95 2.82 2.52 2.28 2.35
72m 0.83 1.63 2.40 2.88 3.03 2.89 2.77 2.49 2.25 2.32
78m 0.74 1.55 2.32 2.81 2.96 2.84 2.72 2.45 2.22 2.29
84m 0.67 1.48 2.24 2.74 2.90 2.78 2.67 2.41 2.18 2.26
90m 0.58 1.41 2.17 2.67 2.84 2.72 2.62 2.36 2.14 2.23
96m 0.51 1.35 2.09 2.60 2.78 2.65 2.56 2.31 2.10 2.19
102m 0.45 1.29 2.03 2.54 2.71 2.59 2.50 2.26 2.06 2.16
108m 0.39 1.23 1.96 2.48 2.65 2.53 2.44 2.21 2.02 2.12
114m 0.34 1.18 1.90 2.42 2.59 2.47 2.39 2.16 1.98 2.09
120m 0.29 1.12 1.84 2.36 2.53 2.41 2.33 2.11 1.94 2.05

Notes: Summary return statistics from investment strategies that go long in the Foreign-country bond and short in the US bond when
the Foreign yield curve slope is lower than the US yield curve slope, and go long in the US bond and short in the Foreign-country bond
when the Foreign yield curve slope is higher than the US yield curve slope. The table reports the mean US dollar-bond excess return
difference for different holding periods and different maturities. Returns are annualised and constructed using pooled end-of-month data
for six currencies—AUD, CAD, CHF, EUR, JPY and GBP—vis-à-vis the USD for different country samples spanning 1980:01-2017:12.
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D Theoretical Derivations

D.1 Derivations for Section 5.2

Consider equations (22)-(23), repeated below for convenience:

mTt,t+1 = log β − 1

2
γσ2
T + α0ϵT,t+1 + α1ϵT,t−

1

2
δσ2

d + d0ϵd,t+1 + d1ϵd,t︸ ︷︷ ︸
unspanned transitory factor

mPt,t+1 =− 1

2
σ2
P + ϵP,t+1

Construct mT
t,t+κ =

∑κ−1
i=0 mT

t+i,t+i+1, m
P
t,t+κ =

∑κ−1
i=0 mP

t+i,t+i+1 as follows:

mT
t,t+κ = κ log β − 1

2
γκσ2

T + α0ϵT,t+1 + α1ϵT,t + · · ·+ α0ϵT,t+κ + α1ϵT,t+κ−1

−1

2
δκσ2

d + d0ϵd,t+1 + d1ϵd,t + · · ·+ d0ϵd,t+κ + d1ϵd,t+κ−1, (D1)

mP
t,t+κ = −1

2
κσ2
P + ϵPt+1 · · ·+ ϵPt+κ (D2)

These imply the following moments:

Et[m
T
t,t+κ] = κ log β − 1

2
γκσ2

T + α1ϵT,t −
1

2
δκσ2

d + d1ϵd,t,

Et[m
P
t,t+κ] = −1

2
κσ2
P,

vart(m
T
t,t+κ) = α2

0σ
2
T + (α0 + α1)

2(κ− 1)σ2
T + d20σ

2
d + (d0 + d1)

2(κ− 1)σ2
d,

vart(m
P
t,t+κ) = κσ2

P

Combining (10) with the above yields:

−rt,κ = κ log β − 1

2
γκσ2

T − 1

2
κσ2
P +

1

2

{
α2
0σ

2
T + (α0 + α1)

2(κ− 1)σ2
T

}
(D3)

+
1

2

{
d20σ

2
d + (d0 + d1)

2(κ− 1)σ2
d + κσ2

P
}
,

= κ log β +
σ2
T
2

(
α2
0 − γκ+ (α0 + α1)

2(κ− 1)
)
+

σ2
d

2

(
d20 − γκ+ (d0 + d1)

2(κ− 1)
)

Condition (24) then follows from yt,κ = 1
κrt,k.

D.1.1 Internationally Incomplete Markets

When markets are incomplete, we follow Backus et al. (2001) and Lustig and Verdelhan (2019)

and consider a (log) exchange-rate process is given by et+1 − et = mt,t+1 −m∗
t,t+1 + ηt+1 where

ηt+1 is an incomplete-markets wedge.

Proposition D.1 (Term Structure and Market Incompleteness) When international fi-

nancial markets are incomplete (ηt+1 ̸= 0), relative yield-curve slopes are unaffected covt(log(S
∗
t )−
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log(St), ηt+1) = 0 and proj(Et[rx
FX
t+κ] | ϵ̃) is unchanged.

Proof : Following Lustig and Verdelhan (2019), frictionless trade across borders in Home and

Foreign bonds for n = 1 (i.e., (9) and (11)) and Foreign analogs, implies:

−Et[ηt+1] =
1

2
vart(ηt+1) + covt(mt+1, ηt+1), (D4)

Et[ηt+1] =
1

2
vart(ηt+1) + covt(m

∗
t+1,−ηt+1) (D5)

Evaluating (9), (11) and Foreign analogs for r
(n)
t , r

(n) ∗
t for n > 1, then covt(r

(n)
t , ηt+1) = 0 ∀n

which delivers the first part of the proposition. Moreover, additionally using (19) implies

covt(ϵ̃, ηt+1) = 0, delivering the second part.

The proposition above does not depend on the specific form of SDFs and shows that, while

market incompleteness will affect the volatility and predictability of exchange rates, it will not

alter the relationship we study.20

One example of market incompleteness is the presence of convenience or liquidity yields.

As shown in Engel and Wu (2022) and Jiang et al. (2024), these increase the predictability of

exchange rates. However, Corsetti, Lloyd, and Marin (2020) shows convenience yields increase

the predictability of the incomplete-markets wedge ηt+1, but are uncorrelated with the relative

slope as long as they are constant along the term structure.

D.2 Derivations for Section 5.4

We focus on a symmetric model with country-specific factors.

Bond-Pricing Recursions. First, consider the one-period bond, n = 1:

pt,1 = Et [mt,t+1] +
1

2
vart (mt,t+1)

= z0,t +

(
1− λ1

2

)
z1,t −

λ2

2
z2,t +

λ2
1

2
z1,t +

λ2
2

2
z2,t

= −z0,t + z1,t

where the first line uses the expression for the bond price for n = 1, the conditional expectation

of equation (28) is used in the second line, and the resulting expression is rearranged to yield

the third line. The one-period risk-free yield yt,1 is therefore given by:

yt,1 = z0,t − z1,t

20Lustig and Verdelhan (2019) discuss that market incompleteness is an unlikely candidate for resolving
exchange-rate puzzles, although Marin and Singh (2024) show that international market incompleteness has
stronger implications in the presence of within country idiosyncratic risk.
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Next, consider the general n-period bond price:

pt,n =Et [mt,t+1 + pt+1,n−1] +
1

2
vart (mt,t+1 + pt+1,n−1)

=− z0,t +

(
1− 1

2
λ2
1

)
z1,t −

1

2
λ2
2z2,t − Ωn−1 −An−1z0,t+1 −Bn−1z1,t+1 − Cn−1z2,t+1

+
1

2
vart

(
λ1

√
z1,tut+1 + λ2

√
z2,tu2,t+1 −An−1z0,t+1 −Bn−1z1,t+1 − Cn−1z2,t+1

)
=− z0,t +

(
1− 1

2
λ2
1

)
z1,t −

1

2
λ2
2z2,t −An−1[(1− ϕ0)z2,t + ϕ0z0,t]

−Bn−1[(1− ϕ1)z2,t + ϕ1z1,t]− Cn−1[(1− ϕ2)θ + ϕ2z2,t]

+
1

2

(
λ2
1z1,t + λ2

2z2,t +A2
n−1σ

2
0z0,t +B2

n−1σ
2
1z1,t + C2

n−1σ
2
2z2,t − λ1Bn−1σ1z1,t − λ2Cn−1σ2z2,t

)
where the second line uses the linear pricing equation and (28); and the third line uses the

process for the factors. Rearranging,the recursions can be seen in the final line:

Ωn =Ωn−1 + Cn−1(1− ϕ2)θ

An =1 +An−1ϕ0 −A2
n−1σ

2
0

Bn =− 1 +Bn−1ϕ1 +
1

2
λ1σ1Bn−1 −

1

2
(Bn−1σ1)

2

Cn =An−1(1− ϕ0) +Bn−1(1− ϕ1) + ϕ2Cn−1 +
1

2
λ2σ2Cn−1 −

1

2
(Cn−1σ2)

2

with initial conditions A0 = C0 = 0, B0 = −1.

Bond Excess Returns. The ex ante n-period bond excess return is defined as Et[rx
(n)
t,t+1] =

Et[pt+1,n−1 − pt,n − yt,1]. This can be written as:

Et

[
rx

(n)
t,t+1

]
=Et [pt+1,n−1 − pt,n − yt,1]

=Et [−Ωn−1 +Ωn −An−1z0,t+1 +Anz0,t −Bn−1z1,t+1 +Bnz1,t − Cn−1z2,t+1 + Cnz2,t]

− z0,t + z1,t

=Cn−1(1− ϕ2)θ2 −An−1Et[z0,t+1] +Anz0,t −Bn−1Et[z1,t+1] +Bnz1,t

− Cn−1Et[z2,t+1] + Cnz2,t − z0,t + z1,t

= [−An−1ϕ0 +An − 1] z0,t + [−Bn−1ϕ1 +Bn + 1] z1,t+

[−An−1(1− ϕ0)−Bn−1(1− ϕ1)− Cn−1ϕ2 + Cn] z2,t

where line 2 uses the pricing equation, line 3 uses the recursion for An defined above, and line 4

expands the conditional expectation of factors and collects like terms. Evaluating the expression

above in the limit as n → ∞ yields:

Et

[
rx

(∞)
t,t+1

]
= [A∞(1− ϕ0)− 1] z0,t + [B∞(1− ϕ1) + 1] z1,t +

[(1− ϕ2)C∞ −A∞(1− ϕ0)−B∞(1− ϕ1)] z2,t (D6)
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which can be rearranged as:

Et

[
rx

(∞)
t,t+1

]
= [A∞(1− ϕ0)] (z0,t − z2,t) + [B∞(1− ϕ1)] (z1,t − z2,t) +

[C∞(1− ϕ2)] z2,t − z0,t + z1,t (D7)

The bond premium is driven by the distance of factors 0 and 1 from their long-run mean and

from movements in the long run mean itself. From the recursion formulas:

Et

[
rx

(∞)
t,t+1

]
=

[
−1

2
(A∞σ0)

2

]
z0,t +

[
1

2
λ1σ1B∞ − 1

2
(B∞σ1)

2

]
z1,t +

[
1

2
λ2σ2C∞ − 1

2
(C∞σ2)

2

]
z2,t

Then, the ex ante bond risk premium is given by:

Et

[
rx

(∞)
t,t+1

]
+

1

2
vart(rn,t+1) =− covt(pt+1,n−1,mt,t+1)

=− λ1σ1Bn−1z1,t − λ2σ2Cn−1z2,t,

recovering equation (29) in the main body. Factor zero does not appear because there is a zero

price of risk.

Yield-Curve Slope and Bond Premium Approximation. The yield curve slope is de-

fined as the difference between yields on n- and 1-period bonds:

St,n =yt,n − yt,1 =
1

n
(Ωn +An +Bnz1,t + Cnz2,t)− z0,1 + z1,t

Evaluating this expression in the limit as n → ∞ yields:

St,∞ = C∞(1− ϕ2)θ − z0,t + z1,t

which arises from the recursions for An, Bn and Cn, where An, Bn and Cn have a finite limit and

Ωn grows linearly. The approximation of the slope by the bond risk premium St,∞ ≈ Et[rx
(∞)
t,t+1]

is also verified within the CIR model. Over long enough samples, Et[z0,t] = Et[z1,t] = Et[z2,t] =

θ, yielding the result.

Exchange Rates. Under complete markets, (log) one-period exchange rate changes are de-

termined as:

Et[et+1]− et = Et[mt,t+1 −m∗
t,t+1] = −(z0,t − z∗0,t) + (1− λ2

1/2)(z1,t − z∗1,t) + λ2/2(z2,t − z∗2,t)

We focus on conditional risk premia because our symmetric setup implies that unconditional

risk premia Et[rx
FX
t+1] are zero. The one-period ERRP can be derived by combining equations

(13) and (28), assuming complete markets:

Et[rx
FX
t+κ,t+κ+1] = (λ2

1/2)Et[z1,t+κ − z∗1,t+κ] + (λ2
2/2)Et[z2,t+κ − z∗2,t+κ] (D8)
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where an increase in z1,t+κ − z∗1,t+κ leads to a fall in rt+κ − r∗t+κ and an increase in conditional

ERRP, as in Fama (1984). However, the ERRP also depends on the second factor (z2,t − z∗2,t)

so long maturity bonds are a useful orthogonal predictor, as in Ang and Chen (2010).

D.2.1 Predictability at Intermediate Horizons

This appendix establishes the ability of the CIR model to deliver orthogonal predictability of

ERRP by bond premia at intermediate horizons.

Transitory-Permanent Variation. We begin by showing how to eliminate permanent in-

novations in the model, such that ERRP in the long-run are zero—and therefore there is no

long-riun predictability. If there are no permanent innovations, Alvarez and Jermann (2005)

show this requires:

Et

[
rx

(∞)
t,t+1

]
=

1

2
vart(mt,t+1)

Since this must be true for any value of z0,t, z1,t, z2,t, using (D6), this requires:

[A∞(1− ϕ0)− 1] = 0, (D9)

[B∞(1− ϕ1) + 1] =
1

2
λ2
1, (D10)

[C∞(1− ϕ2)−B∞(1− ϕ1)−A∞(1− ϕ0)] =
1

2
λ2
2 (D11)

such that:

Et

[
rx

(∞)
t+1 − rx

(∞) ∗
t+1

]
= (λ2

1/2)[z1,t − z∗1,t] + (λ2
2/2)[z2,t − z∗2,t] (D12)

coinciding exactly with the one-period Et[rx
FX
t+1].

Longer-Horizon Currency Movements. The κ-step-ahead exchange-rate change is then

given by:

Et[et,t+κ]− et =
κ∑

i=1

Et[∆
1et+i] = (D13)

1− ϕκ
0

1− ϕ0
(z∗0,t − z0,t) + (1− ϕ0)

κ−1∑
i=0

i−1∑
j=0

ϕj
0(z

∗
2,t+i−1−j − z2,t+i−1−j)︸ ︷︷ ︸∑κ−1

i=1 Et[z∗0,t+i−z0,t+i]



+
λ2
1 − 1

2


1− ϕκ

1

1− ϕ1
(z∗1,t − z1,t) + (1− ϕ1)

κ−1∑
i=0

i−1∑
j=0

ϕj
1(z

∗
2,t+i−1−j − z2,t+i−1−j)︸ ︷︷ ︸∑κ−1

i=1 Et[z∗1,t+i−z1,t+i]


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+
λ2
2

2

1− ϕk
2

1− ϕ2
(z∗2,t − z2,t)︸ ︷︷ ︸∑κ−1

i=1 Et[z∗2,t+i−z2,t+i]

Importantly, expected depreciations are stricly increasing in both factors (z1,t, z2,t) ceteris

paribus. This implies higher relevance of the second factor at longer horizons through two

chanels. First, because factor 2 is assumed more persistent. Second, because factor 1 tend to

factor 2 in the long run.

General Formulation with Hidden Factors. Finally, as in Section 5.2, we consider a

generalization of the representative Home investor’s SDF such that factor 2 can be hidden from

longer maturity interest rates:

−mt,t+1 = z0,t + (ξ + λ2
1/2)z1,t + λ1

√
z1,tϵt+1 + (ζ + λ2

2/2)z2,t + λ2
√
z2,tϵ2,t+1 (D14)

The price of an n−period bond is given by

p
(n)
t = −z0,t − (ξ + λ2

1/2)z1,t − (ζ+λ
2
2/2)z2,t − Ωn−1 −An−1z0,t −Bn−1z1,t − Cn−1z2,t

+
1

2

{
λ2
1z1,t + λ2

2z2,t +A2
n−1σ

2
0z0,t +B2

n−1σ
2
1z1,t + C2

n−1σ
2
2z2,t − λ1σ1Bn−1z1,t − λ2σ2Cn−1z2,t

}
(D15)

It follows that:

Ωn =Ωn−1 + Cn−1(1− ϕ2)θ

An =1 +An−1ϕ0 −A2
n−1σ

2
0

Bn =ξ +Bn−1ϕ1 +
1

2
λ1σ1Bn−1 −

1

2
(Bn−1σ1)

2

Cn =ζ +An−1(1− ϕ0) +Bn−1(1− ϕ1) + ϕ2Cn−1 +
1

2
λ2σ2Cn−1 −

1

2
(Cn−1σ2)

2

where Ω0 = 0, A0 = 1, B0 = ξ, C0 = ζ.

Consider, for example, the maturity κ = 2:

p
(2)
t = −[ξ(1− ϕ2)θ2]−

[
(1 + ϕ0)−

1

2
σ2
0

]
z0,t −

[
ξ(1 + ϕ1) +

1

2
λ1ξσ1 −

1

2
ξ2σ2

1

]
z1,t(D16)

−
[
(1− ϕ0) + ξ(1− ϕ1)− ζ(1 + ϕ2)−

1

2
ζ2σ2

2 + λ2ζσ2

]
z2,t

therefore,

p
(2)
t = Ω2 +A2z0,t +B2z1,t, if ζ2σ2

2 + ζ(1 + ϕ2 − λ2σ2) + [ξ(1− ϕ1) + (1− ϕ0)] = 0

which, once again imposes (20) and ensures factor z2,t is not reflected in the spot-yield differ-

ential.
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