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Abstract

We document that currencies with a steeper yield curve tend to depreciate against the US

dollar, independently of interest-rate differentials, especially at 2 to 4-year horizons. Using

survey data, we demonstrate that this relationship is driven by expectations of macroeco-

nomic fundamentals reflected in the yield-curve slope. Within a no-arbitrage, preference-free

framework, we derive conditions under which transitory risk can rationalize our documented

relationship alongside the ‘disconnect’ of exchange rates from interest rates. We show these

conditions emerge as equilibrium outcomes in models of domestically-incomplete markets.
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1 Introduction

Uncovered interest parity (UIP) predicts that expected carry-trade returns should be zero.

While UIP robustly fails at short horizons (Hansen and Hodrick, 1980; Fama, 1984; Engel,

2016), it cannot be rejected empirically over long horizons (Chinn and Meredith, 2005; Chinn

and Quayyum, 2012) or with long-maturity bonds (Lustig, Stathopoulos, and Verdelhan, 2019).

In this paper, we shift our focus to, comparatively underexplored, intermediate horizons and doc-

ument how differences between long- and short-maturity interest rates—the yield-curve ‘slope’—

can explain exchange-rate dynamics, over and above spot-yield differentials. Our focus on the

slope is motivated by its widespread use as a leading indicator of macroeconomic outcomes

(Estrella and Hardouvelis, 1991; Estrella and Mishkin, 1998; Estrella, 2005; Bansal and Shalias-

tovich, 2013), allowing us to revisit the ‘disconnect’ between exchange rates and macroeconomic

fundamentals (Meese and Rogoff, 1983), both empirically and theoretically.

We first document an empirical association between relative yield-curve slopes and exchange-

rates, which is strongest at medium-term (2 to 4-year) horizons. To provide an initial illustration

of this novel finding, Figure 1 plots coefficient estimates from ‘canonical’ UIP regressions—of

exchange-rate changes on spot-yield differentials—across horizons (from 6 months to 10 years)

and UIP regressions ‘augmented’ with cross-country differences in yield-curve slopes—here,

measured as the difference between observed 10-year and 6-month yields, a common proxy,

for a panel of 6 advanced economies vis-à-vis the US.1 Most striking is the significant tent-

shaped relationship across horizons between the relative slope and exchange rates, conditional

on interest-rate differentials (Figure 1b). At the 3-year peak, a 1pp increase in a country’s

yield-curve slope relative to the US is, on average, associated with a 4.4% cumulative (1.64%

annualized) exchange-rate depreciation over that horizon.

We explore this result further by analyzing the association between relative yield-curve

slopes, bond risk premia and exchange-rate risk premia (ERRP), extending the empirical anal-

ysis in Lustig et al. (2019). By distinguishing carry-trade strategies across holding periods and

using different maturity bonds, our empirical framework has at least two advantages relative

to the literature. First, we disentangle the relationship between the relative yield-curve slope

and ERRP, as opposed to local-currency bond risk premia. Second, our specification reduces

the empirical challenges posed by the limited number of non-overlapping observations in the

long-horizon UIP regressions underpinning Figure 1. Still, as in the augmented UIP regression,

we identify a tent-shaped relationship between exchange rates and relative slopes that peaks at

2 to 4-year holding periods, for a range of bond maturities, and is orthogonal to interest-rate dif-

ferentials. We further show that the relationship is predominantly linked to ERRP. Our results

are also robust to a range of specification changes, as well as the inclusion of liquidity yields

(Du, Im, and Schreger, 2018; Engel and Wu, 2022) (the non-monetary returns that government

bonds provide due to their safety, ease of resale, and collateral value).

1Figure 1a plots the estimated yield-differential coefficients. While our main focus is on Panel (b), the
augmented regression does not challenge the common view that UIP can be rejected at short to medium horizons,
but is harder to reject at longer horizons. Appendix A.2 details the regression specification.
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Figure 1: Results from canonical and augmented UIP regressions

(a) Estimated relative-yield coefficients
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(b) Estimated relative-slope coefficients
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Notes: Coefficient estimates from regressions of κ-month exchange-rate change on: (i) κ-month yield differentials;

(ii) κ-month yield differentials and relative yield-curve slope. See Appendix A.2 for details. Panel (a): loading on

relative-yield differentials from (i) (red crosses) and (ii) (black circles); (b): loading on relative-slope differentials

from (ii). Horizontal axes plot horizons κ in months. Regressions estimated for 6 currencies (AUD, CAD,

CHF, EUR, JPY, GBP) vs. USD, 1980:01-2024:09, pooled with country fixed effects. 95% confidence intervals,

calculated using Driscoll and Kraay (1998) standard errors, denoted by gray shading/black bars.

To uncover the drivers of this relationship, we use survey data from Consensus Economics

to show that the component of the relative yield-curve slope associated with ERRP is tightly

linked to expectations of macroeconomic fundamentals. We do so by first isolating variation in

relative yield-curve slopes explained by cross-country differences in expectations of GDP growth

and inflation.2 Going a step further, we show that it is predominantly this component of relative

slopes—as opposed to the unexplained component—that generates the tent-shaped relationship

between yield curves and exchange rates. So, our evidence suggests that the relationship between

relative yield-curve slopes and intermediate-horizon exchange-rate dynamics that we uncover

has its roots in cross-country differences in expected macroeconomic fundamentals.

Turning to theory, we show that the empirical association between relative slopes and ERRP

can be reproduced within a no-arbitrage framework, alongside the ‘disconnect’ of exchange rates

from spot yields. To do so, we build on the SDF process proposed in Alvarez and Jermann

(2005), which expands on the canonical Vasicek (1977) model for the term-structure of interest

rates, and undertake a risk-accounting exercise. The model incorporates three types of risk: (i)

permanent innovations; (ii) transitory innovations; and (iii) transitory innovations which are

restricted to have an offsetting conditional mean and variance. While all three drive exchange

rates, (i) is not reflected in spot yields or yield-curves slopes (Chernov and Creal, 2023) and

would result in failure of long-run UIP if not equalized across countries (Lustig et al., 2019).

(ii) is reflected in both yields and slopes (Alvarez and Jermann, 2005). We show that only (iii)

drives yield-curve slopes, but is ‘hidden’ from spot yields.

Through the lens of our decomposition, cross-country differences in both transitory inno-

2Bansal and Shaliastovich (2013) show that yield-curve slopes are associated with expectations of GDP growth
and inflation within a country. Consistent with our focus on the relative price of currencies, our analysis hones
in on cross-country differences in slopes and macroeconomic expectations.
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vations drive exchange-rate dynamics. With transitory risk, booms—periods in which con-

sumption has low marginal value—are expected to be followed by busts—periods in which

consumption has high marginal value, and so yield curves slope upwards, on average, to com-

pensate investors for risk (Piazzesi and Schneider, 2007). This ‘business-cycle’ risk is consistent

with our empirical evidence using survey data showing that the association between ERRP

and relative yield-curve slopes reflects cross-country differences in macroeconomic expectations.

Our results echo Basu, Candian, Chahrour, and Valchev (2021) who identify a ‘risk shock’ that

drives a large portion of aggregate co-movement over the business-cycle, including exchange

rates, and contributes to a positive yield-curve slope. Furthermore, as long as transitory risk is

predominantly due to the hidden factor (iii), this will also imply a disconnect of exchange rates

from spot yields.

Not only are the conditions which underlie hidden factors plausible, they arise as equilibrium

outcomes in a large class of models where heterogeneous agents trade in incomplete financial

markets—e.g., due to segmentation within or across countries, or due to the presence of unin-

surable idiosyncratic risk.3 To see this, we consider a framework where there are two investors

in the domestic economy. The marginal investor trades in both domestic and foreign bonds and

is exposed to two (transitory) factors, while the other only invests in domestic bonds and is

exposed only to one. Here, no arbitrage requires that the second factor be hidden from bond

prices of any traded maturity (i.e., it be unspanned), since investors must agree on pricing, yet

the second factor will still be reflected in the yield curve slope. This occurs because the hidden

factor has offsetting effects on the mean and variance of SDFs. Our findings are therefore a

challenge for general-equilibrium models which generate a functional relationship between the

mean and variance of SDFs—notably, those with external habits (Campbell and Cochrane,

1999) and long-run risk (Bansal and Shaliastovich, 2013)—as summarized in Hassan, Mertens,

and Wang (2024), who argue that this creates a tension between closed and open-economy asset

pricing. To speak to these contributions, we conclude by showing our findings survive in a class

of dynamic asset-pricing models that allow for time-varying volatility (e.g., Cox, Ingersoll, and

Ross, 1985).

Related Literature. While previous studies have noted an empirical association between

exchange rates and relative yield-curve slopes (e.g., Ang and Chen, 2010; Chen and Tsang,

2013; Gräb and Kostka, 2018; Chernov and Creal, 2020), our analysis goes further in three

ways.4 First, our focus is on intermediate horizons whereas existing studies focus on horizons of

3Within-country segmentation is studied in, e.g., Alvarez, Atkeson, and Kehoe (2009); Hassan (2013), cross-
country segmentation in, e.g., Gabaix and Maggiori (2015); Itskhoki and Mukhin (2017); Chernov, Haddad, and
Itskhoki (2024). Gourinchas, Ray, and Vayanos (2022) includes both. Incomplete markets due to idiosyncratic
risk and the associated asset-pricing implications are studied in Constantinides and Duffie (1996a); Alvarez et al.
(2009); Hassan (2013); Marin and Singh (2024).

4Chen and Tsang (2013) only find significance at short horizons, but we attribute this difference to the fact they
capture relative yield-curve factors by directly estimating Nelson and Siegel (1987) decompositions from relative
interest-rate differentials, thus assuming common factor structures across countries. In contrast, we construct
proxies for factors using yield curves estimated on a country-by-country basis, allowing factor structures to be
country-specific.
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less than 2 years. Second, by extending the empirical setup of Lustig et al. (2019), we distinguish

the relative slope’s role for different components of bond returns to show a particular association

between the slope and ERRP, not local-currency bond premia. Third, we use survey data to

document new evidence that the relationship between the relative slope and ERRP is specifically

associated with cross-country differences in macroeconomic expectations.

In doing so, we contribute more generally to the literature ‘reconnecting’ currency moves

to fundamentals. While existing examples use, e.g., production data (Colacito, Riddiough, and

Sarno, 2020), capital-flow data (Lilley, Maggiori, Neiman, and Schreger, 2022) or productivity-

news shocks (Chahrour, Cormun, De Leo, Guerron-Quintana, and Valchev, 2021) to assess the

macroeconomic origins of exchange-rate dynamics, our study connects exchange-rate changes

to cross-country differences in macroeconomic expectations captured in survey data. To date, a

limited literature has used such data to assess short-horizon exchange-rate anomalies (e.g., Can-

dian and De Leo, 2023; Stavrakeva and Tang, 2023) but our analysis is unique in its particular

focus on medium-term horizons.

Our theoretical exposition contributes to a literature using term-structure models to un-

derstand exchange-rate determination (e.g., Lustig et al., 2019; Chernov and Creal, 2023). We

make three further contributions here. First, while others have shown an association between

the relative slope and ERRP within a no-arbitrage setup, we introduce restrictions to tran-

sitory risk to reproduce the ‘connection’ between yield-curve slopes and ERRP alongside the

‘disconnect’ between ERRP and spot yields and the failure to reject long-horizon UIP. Sec-

ond, while term-structure models are almost exclusively written under complete markets with

a unique SDF, we contribute to a nascent literature on ‘hidden’ factors (Joslin, Priebsch, and

Singleton, 2014; Bakshi, Crosby, Gao, and Hansen, 2023), illustrating how these restrictions

arise as equilibrium outcomes in models of incomplete markets. Finally, we build on Balduzzi,

Das, and Foresi (1998) and Ang and Chen (2010) to show how our results generalize to models

of stochastic volatility. Relative to Ang and Chen (2010), we derive the conditions required to

jointly deliver the failure of UIP, upward sloping yield curves and a relationship between yield

curves and ERRP.

Outline. Section 2 presents our empirical results. Section 3 describes our preference-free, no-

arbitrage framework, establishing a link between yield-curve slopes and transitory risk. Section

4 specifies a model which rationalizes our findings alongside the disconnect from short yields.

Section 5 concludes.

2 Empirical Link Between Exchange Rates and Relative Slopes

We first present new empirical evidence about the link between exchange rates, vis-à-vis the

US dollar, and relative yield-curve slopes. We then show that the relationship between relative

slopes and ERRP at medium-term horizons is predominantly associated with cross-country

differences expectations of GDP growth and inflation.
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2.1 Excess Returns, Risk Premia and Relative Slopes

2.1.1 Empirical Setup

Let Pt,κ denote the price of a κ-maturity zero-coupon bond at time t and Rt,κ ≥ 1 denote the

gross return on that bond. To decompose bond returns, we distinguish a bond’s maturity κ from

its holding period h, where h ≤ κ and h = κ if and only if the bond is held to maturity. The

h-month holding period return on a κ-month zero-coupon bond is HPR
(κ)
t,t+h = Pt+h,κ−h/Pt,κ

(the bond’s resale price at t + h when its maturity has diminished by h months relative to its

time-t price). The (log) excess return on that bond over the holding period h is thus:

rx
(κ)
t,t+h = log

HPR
(κ)
t,t+h

Rt,h

 (1)

where Rt,h is the gross return on an h-month zero-coupon bond at time t, the risk-free rate.

The h-period (log) return on a Foreign bond, expressed in US dollars, in excess of the

risk-free return in the base currency, rx
(κ),$
t,t+h, can be decomposed as:

rx
(κ),$
t,t+h = log

HPR
(κ)∗
t,t+h

Rt,h

Et
Et+h

 = log

HPR
(κ)∗
t,t+h

R∗
t,h

+ log

[
R∗

t,h

Rt,h

Et
Et+h

]
= rx

(κ)∗
t,t+h + rxFX

t,t+h (2)

where rx
(κ)∗
t,t+h represents the (log) local-currency bond return from a Foreign bond and rxFX

t,t+h

is the (log) currency excess return.

To study the drivers of these returns, we first estimate the following panel regressions for

different holding periods h and bond maturities κ:

y
(κ)
j,t,h = γ

(κ)
2,h

(
S∗
j,t − St

)
+ f

(κ)
j,h + ε

(κ)
j,t+h (3)

where S∗
j,t is the slope of the Foreign-country-j yield curve at time t, St is the slope of the

base-country yield curve, 5 and y
(κ)
j,t,h is either:

• rx
(κ),$
j,t,t+h − rx

(κ)
US,t,t+h: the dollar bond-return difference, the excess return on the Foreign

bond in US dollar terms relative to the US return;

• rxFX
j,t,t+h: the exchange-rate risk premium (ERRP), the excess return from Foreign cur-

rency; or,

• rx
(κ)∗
j,t,t+h − rx

(κ)
US,t,t+h: the local-currency bond-return difference, the excess return on the

Foreign bond in Foreign-currency terms relative to the US return.

The coefficient γ
(κ)
2,h captures the association between the relative slope and (annualized) ERRP

or bond premia.

5Along with its curvature, the level and slope of the yield curve are known to capture a high degree of variation
in bond yields (Litterman and Scheinkman, 1991).
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Regression (3) aligns with the specification in Lustig et al. (2019) when h = 1—although they

consider a 1-month holding period, while we look at 6-month holding periods, so comparison

is not exact. Looking at κ = 120 only, they show that the relative yield-curve slope has an

insignificant influence on dollar bond-return differences, but opposing effects on local-currency

bond-return differences (positive coefficient) and ERRP (negative coefficient) that cancel out

overall. Our empirical framework extends this, assessing the predictability of excess returns

with yield-curve slope differentials at a range of maturities κ and holding periods h, bridging

the gap between the canonical UIP regressions and Lustig et al. (2019).

To account for the contribution of the relative slope over and above spot-yield differentials,

we also estimate the following extending regression:

y
(κ)
j,t,h = γ

(κ)
1,h

(
r∗j,t,h − rt,h

)
+ γ

(κ)
2,h

(
S∗
j,t − St

)
+ f

(κ)
j,h + ε

(κ)
j,t+h (4)

where the maturity of the relative spot yield, rj,t,h ≡ log(Rj,t,h), matches the holding period h

of the excess return on the left-hand side y
(κ)
j,t,h.

2.1.2 Data

We estimate these regressions using exchange- and interest-rate data for 7 jurisdictions with

liquid bond markets: Australia, Canada, Switzerland, Euro Area, Japan, UK, and US. The US

is the base country among our sample of G7 currencies. To capture the term structure of interest

rates in each region, we use nominal zero-coupon government bond yields of 6, 12, 18, ..., 120-

month maturities. Yield curves are obtained from a combination of sources, including central

banks and Wright (2011) (Appendix A.1), so our bond-yield panel is unbalanced. Nominal

exchange-rate data is from Refinitiv. We use end-of-month data from 1980:01 to 2024:09.

We measure the yield-curve slope in each region with proxies. We define the slope as the

difference between the 10-year and 6-month yields, S∗
j,t ≡ y∗j,t,10y − y∗j,t,6m.6 Since these proxies

are constructed by taking cross-country differences derived from yield curves estimated on a

country-by-country basis, we do not assume any symmetry in the factor structure of yield

curves across countries—unlike Chen and Tsang (2013).

2.1.3 Results

Tables 1 and 2 present the full results for regression (3), with Figure 2 focusing on the coef-

ficient estimates for the 10-year maturity only (κ = 120). Importantly, where our regression

specification most closely matches Lustig et al. (2019), at short holding periods h = 6 and

the longest maturity κ = 120, our results mirror theirs. The relative slope is insignificantly

associated with the dollar bond-return difference (Panel A), a positive and significant influence

on the local-currency bond-return difference (Panel C), and a negative and significant influence

6We prefer this proxy to principal-component estimates of the slope, which potentially contain look-ahead
bias, being defined using weights estimated using information in the whole sample. By construction, our proxy
is only based on information available up to time t. Nevertheless, our findings are robust to the use of principal-
component-based measures.
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Figure 2: Estimated relative slope coefficients from excess-return regressions across holding
periods for 10-year maturity
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(120)
2,h estimates from regression (3) for dollar bond-return differences (blue diamonds), exchange-rate

risk premia (maroon circles) and local-currency bond-return differences (grey crosses). Horizontal axis denotes

the holding period h in months. Regressions estimated using pooled monthly data for 6 currencies (AUD, CAD,

CHF, EUR, JPY, GBP) against the USD from 1980:01 to 2024:09, including country fixed effects. 95% confidence

intervals, calculated using Driscoll and Kraay (1998) standard errors, denoted by shaded areas/bars around point

estimates.

on the ERRP (Panel B). The latter two effects approximately cancel out for dollar bond-return

differences. More generally, the short-horizon local-currency bond-return difference predictabil-

ity confirm results for US bond returns (see, e.g., Fama and Bliss, 1987; Campbell and Shiller,

1991; Cochrane and Piazzesi, 2005).

Exploring our results across holding periods h and for all maturities κ, two observations

are noteworthy. First, while the relative yield-curve slope does not significantly predict dollar

bond-return differences at the 6-month holding period for 10-year bonds, the relative-slope

loading for the same bond maturity is significantly non-zero over some longer holding periods.

While, in the former case, the influence of the relative slope on currency and local-currency

bond returns offset one another (in line with Lustig et al., 2019), our results indicate that the

influence of the relative slope on the currency premium dominates over longer holding periods,

even for long-term bonds. This does not necessarily contradict the conclusions in Lustig et al.

(2019), but echoes that exchange rates may be near random-walk objects (e.g., Chernov and

Creal, 2023; Andrews, Colacito, Croce, and Gavazzoni, 2024). Nevertheless, for a given holding

period, the influence of the relative slope on dollar bond returns decreases in magnitude with

maturity.

Second, for a given maturity, the loading on the relative slope tends to peak in magnitude at

short-to-medium holding periods for the dollar bond risk premium. For the 66-month maturity,

and above, the peak coefficient occurs at the 18-month holding period. Here a 1pp increase in the

Foreign relative slope, vis-à-vis the US slope, is associated with a 1.2-1.8% annualised reduction

in dollar-bond premia on Foreign bonds. This gives rise to a(n inverse) tent shaped relationship

in the coefficients across h, as the Figure 2 shows for dollar bond-return differences for the
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Table 1: Slope coefficient estimates from dollar bond-return and ERRP regressions

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Holding Periods h

6m 12m 18m 24m 30m 36m 42m 48m 54m 60m

Panel A: Dependent Variable rx
(κ),$
j,t,t+h − rx

(κ)
US,t,t+h

12m -2.44***
(0.74)

18m -2.41*** -2.17***
(0.73) (0.52)

24m -2.36*** -2.15*** -2.10***
(0.71) (0.51) (0.41)

30m -2.31*** -2.12*** -2.10*** -1.91***
(0.71) (0.51) (0.40) (0.34)

36m -2.24*** -2.08*** -2.08*** -1.92*** -1.79***
(0.70) (0.50) (0.39) (0.33) (0.28)

42m -2.17*** -2.02*** -2.05*** -1.91*** -1.80*** -1.60***
(0.69) (0.49) (0.38) (0.33) (0.27) (0.23)

48m -2.09*** -1.96*** -2.01*** -1.89*** -1.79*** -1.60*** -1.34***
(0.68) (0.49) (0.38) (0.32) (0.27) (0.22) (0.21)

54m -2.00*** -1.89*** -1.95*** -1.87*** -1.77*** -1.59*** -1.33*** -1.06***
(0.68) (0.48) (0.37) (0.32) (0.26) (0.22) (0.21) (0.21)

60m -1.91*** -1.82*** -1.90*** -1.83*** -1.75*** -1.57*** -1.32*** -1.05*** -0.82***
(0.68) (0.48) (0.37) (0.31) (0.26) (0.22) (0.20) (0.21) (0.21)

66m -1.81*** -1.74*** -1.84*** -1.78*** -1.71*** -1.54*** -1.29*** -1.03*** -0.81*** -0.65***
(0.68) (0.48) (0.36) (0.31) (0.25) (0.21) (0.20) (0.21) (0.21) (0.20)

72m -1.72** -1.66*** -1.77*** -1.74*** -1.67*** -1.51*** -1.27*** -1.01*** -0.79*** -0.64***
(0.68) (0.48) (0.36) (0.31) (0.25) (0.21) (0.20) (0.20) (0.20) (0.20)

78m -1.62** -1.58*** -1.70*** -1.68*** -1.63*** -1.47*** -1.23*** -0.99*** -0.77*** -0.62***
(0.68) (0.48) (0.36) (0.30) (0.25) (0.21) (0.20) (0.20) (0.20) (0.19)

84m -1.52** -1.49*** -1.64*** -1.63*** -1.58*** -1.43*** -1.20*** -0.96*** -0.75*** -0.61***
(0.68) (0.48) (0.36) (0.30) (0.25) (0.21) (0.19) (0.20) (0.19) (0.19)

90m -1.43** -1.41*** -1.57*** -1.57*** -1.53*** -1.39*** -1.16*** -0.93*** -0.73*** -0.59***
(0.68) (0.48) (0.36) (0.30) (0.25) (0.21) (0.19) (0.20) (0.19) (0.19)

96m -1.34** -1.33*** -1.50*** -1.52*** -1.48*** -1.34*** -1.12*** -0.90*** -0.70*** -0.57***
(0.68) (0.48) (0.36) (0.30) (0.24) (0.21) (0.19) (0.19) (0.19) (0.18)

102m -1.24* -1.25*** -1.43*** -1.46*** -1.43*** -1.30*** -1.07*** -0.86*** -0.68*** -0.55***
(0.68) (0.48) (0.35) (0.30) (0.24) (0.21) (0.19) (0.19) (0.18) (0.18)

108m -1.15* -1.17** -1.37*** -1.40*** -1.38*** -1.25*** -1.03*** -0.83*** -0.65*** -0.53***
(0.68) (0.48) (0.35) (0.30) (0.24) (0.21) (0.19) (0.19) (0.18) (0.18)

114m -1.07 -1.09** -1.30*** -1.35*** -1.33*** -1.20*** -0.99*** -0.80*** -0.62*** -0.51***
(0.68) (0.48) (0.35) (0.29) (0.24) (0.21) (0.19) (0.19) (0.18) (0.17)

120m -0.98 -1.02** -1.24*** -1.29*** -1.28*** -1.16*** -0.95*** -0.76*** -0.59*** -0.48***
(0.68) (0.48) (0.35) (0.29) (0.24) (0.21) (0.19) (0.19) (0.18) (0.17)

Panel B: Dependent Variable rxFX
j,t,t+h

SR -2.43*** -2.17*** -2.10*** -1.88*** -1.77*** -1.59*** -1.33*** -1.05*** -0.82*** -0.65***
(0.76) (0.54) (0.42) (0.35) (0.28) (0.23) (0.22) (0.22) (0.22) (0.21)

Notes: Coefficient estimates on the relative yield curve slope SR
t ≡ S∗

t − St from regressions with the (log) dollar bond-return difference

(Panel A) or the (log) ERRP (Panel B) as dependent variables. Regressions estimated using pooled end-of-month data for 6 currencies

(AUD, CAD, CHF, EUR, JPY, GBP) against the USD for 1980:01-2024:09. Log returns are annualised. All regressions include country

fixed effects. The panels are unbalanced and Driscoll and Kraay (1998) standard errors are reported in parentheses. ∗, ∗∗ and ∗∗∗ denote

significant point estimates at 10%, 5% and 1% levels, respectively.
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Table 2: Slope coefficient estimates from local-currency bond-return regressions

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Holding Periods h

6m 12m 18m 24m 30m 36m 42m 48m 54m 60m

Panel C: Dependent Variable rx
(κ)
j,t,t+h − rx

(κ)
US,t,t+h

12m -0.01
(0.04)

18m 0.02 -0.00
(0.08) (0.03)

24m 0.07 0.01 -0.01
(0.12) (0.06) (0.03)

30m 0.13 0.04 -0.01 -0.03
(0.15) (0.09) (0.05) (0.02)

36m 0.19 0.09 0.01 -0.04 -0.02
(0.17) (0.11) (0.07) (0.04) (0.02)

42m 0.26 0.14 0.04 -0.03 -0.03 -0.01
(0.20) (0.12) (0.09) (0.06) (0.03) (0.01)

48m 0.35 0.21 0.09 -0.01 -0.02 -0.02 -0.01
(0.22) (0.15) (0.11) (0.07) (0.05) (0.03) (0.01)

54m 0.43* 0.28* 0.14 0.02 -0.00 -0.00 -0.00 -0.00
(0.24) (0.16) (0.12) (0.08) (0.06) (0.04) (0.02) (0.01)

60m 0.52** 0.35** 0.19 0.05 0.03 0.02 0.01 0.01 0.00
(0.26) (0.17) (0.13) (0.10) (0.07) (0.05) (0.03) (0.02) (0.01)

66m 0.62** 0.43** 0.26* 0.10 0.06 0.05 0.04 0.02 0.01 0.01
(0.28) (0.19) (0.15) (0.11) (0.08) (0.06) (0.04) (0.03) (0.02) (0.01)

72m 0.72** 0.51** 0.32** 0.15 0.10 0.08 0.07 0.04 0.03 0.02
(0.29) (0.20) (0.16) (0.12) (0.09) (0.06) (0.05) (0.04) (0.03) (0.02)

78m 0.81*** 0.59*** 0.39** 0.20 0.15 0.12 0.10* 0.07 0.05 0.03
(0.31) (0.21) (0.17) (0.13) (0.10) (0.07) (0.06) (0.05) (0.04) (0.02)

84m 0.91*** 0.67*** 0.46** 0.25* 0.20* 0.16** 0.14** 0.09* 0.07 0.05
(0.32) (0.22) (0.18) (0.14) (0.11) (0.08) (0.07) (0.05) (0.04) (0.03)

90m 1.00*** 0.76*** 0.52*** 0.31** 0.25** 0.20** 0.17** 0.13** 0.09* 0.06*
(0.33) (0.23) (0.19) (0.14) (0.11) (0.09) (0.07) (0.06) (0.05) (0.04)

96m 1.10*** 0.84*** 0.59*** 0.37** 0.30** 0.25*** 0.22*** 0.16** 0.12** 0.08**
(0.34) (0.24) (0.20) (0.15) (0.12) (0.10) (0.08) (0.07) (0.06) (0.04)

102m 1.19*** 0.92*** 0.66*** 0.42*** 0.35*** 0.29*** 0.26*** 0.19** 0.14** 0.11**
(0.35) (0.25) (0.21) (0.16) (0.13) (0.10) (0.09) (0.07) (0.06) (0.05)

108m 1.28*** 1.00*** 0.73*** 0.48*** 0.40*** 0.34*** 0.30*** 0.23*** 0.17** 0.13**
(0.36) (0.26) (0.21) (0.17) (0.14) (0.11) (0.10) (0.08) (0.07) (0.05)

114m 1.37*** 1.07*** 0.79*** 0.54*** 0.45*** 0.39*** 0.34*** 0.26*** 0.20*** 0.15**
(0.37) (0.27) (0.22) (0.18) (0.14) (0.12) (0.10) (0.09) (0.07) (0.06)

120m 1.45*** 1.15*** 0.86*** 0.59*** 0.49*** 0.43*** 0.38*** 0.29*** 0.23*** 0.17***
(0.39) (0.29) (0.23) (0.19) (0.15) (0.13) (0.11) (0.09) (0.08) (0.06)

Notes: Coefficient estimates on the relative yield curve slope S∗
t − St from regressions with the (log) local-currency bond-return

difference (Panel C) as dependent variable. Regressions estimated using pooled end-of-month data for 6 currencies (AUD, CAD,

CHF, EUR, JPY, GBP) against the USD for 1980:01-2024:09. Log returns are annualised. All regressions include country fixed

effects. The panels are unbalanced and Driscoll and Kraay (1998) standard errors are reported in parentheses. ∗, ∗∗ and ∗ ∗ ∗
denote significant point estimates at 10%, 5% and 1% levels, respectively.
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Figure 3: Estimated relative slope coefficients from ERRP regressions across holding periods
with and without controlling for relative spot-yield differentials
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Notes: γ̂2,h estimates from regressions (3) (maroon circles) and (4) (black circles) for exchange-rate risk premia.

Horizontal axis denotes the holding period h in months. Regressions estimated using pooled monthly data for

6 currencies (AUD, CAD, CHF, EUR, JPY, GBP) against the USD from 1980:01 to 2024:09, including country

fixed effects. 95% confidence intervals, calculated using Driscoll and Kraay (1998) standard errors, denoted by

shaded areas/bars around point estimates.

10-year maturity. Although significant at shorter holding periods and longer maturities, the

relative slope loadings are quantitatively small for local-currency bond premia. Panel B reveals

that the relative slope is predominantly associated with ERRP, since loadings on currency excess

returns dominate in explaining the relative slope’s impact on relative dollar-bond risk premia.

The (inverse) tent-shaped relationship between the relative slope and excess returns arises

when controlling for spot-yield differentials, as in regression (4). Figure 3 demonstrates this,

presenting the coefficient estimates on the relative slope for ERRP from that regression, com-

pared to the benchmark regression (3). The coefficient estimates are also tabulated in Panel

A of Table 3. In the specification with spot-yield differentials as controls, the negative coeffi-

cient on the relative slope is significantly different from zero from the 18-month holding period

and above. At the peak, 30-month horizon, a 1pp increase in the Foreign yield curve vis-à-vis

the US is associated with a 1.6% annualised reduction in the Foreign ERRP—quantitatively

consistent with the role of the relative slope in Figure (1). Therefore our results indicate that

the relative slope has predictive power over and above spot-yield differences at business-cycle

horizons specifically.

2.1.4 Robustness

Before proceeding, we briefly summarize the robustness of these empirical findings vis-à-vis the

US dollar base. However, we concede that, like other UIP patterns, the tent-shaped relation-

ship between relative slope and ERRP is specific to using the US dollar as the base currency,

suggestive of a global ‘dollar’ factor, consistent with the analysis in, e.g., Jiang (2024).
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Table 3: Robustness of relative slope coefficient estimates from regression (3) for rxFX
t,t+h

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Holding Periods h

6m 12m 18m 24m 30m 36m 42m 48m 54m 60m
A: Controlling for interest-rate differentials

SR -0.85 -1.05 -1.51** -1.51*** -1.58*** -1.45*** -1.22*** -0.96*** -0.78*** -0.66***
(1.17) (0.88) (0.63) (0.54) (0.45) (0.37) (0.30) (0.27) (0.25) (0.24)

rRh 2.77 1.11 0.44 0.23 0.11 0.07 0.05 0.04 0.02 -0.00
(1.74) (0.70) (0.37) (0.25) (0.18) (0.13) (0.09) (0.07) (0.06) (0.05)

B: 1980:01-2005:12 sub-sample

SR -1.06 -1.11 -1.63** -1.69*** -1.77*** -1.65*** -1.50*** -1.29*** -1.15*** -1.05***
(1.35) (1.02) (0.76) (0.65) (0.54) (0.44) (0.34) (0.29) (0.27) (0.26)

rRh 4.90** 2.16** 0.98* 0.55 0.29 0.18 0.11 0.06 -0.00 -0.04
(2.39) (0.94) (0.51) (0.35) (0.25) (0.18) (0.12) (0.09) (0.07) (0.06)

C: 1995:01-2024:09 sub-sample

SR -0.87 -1.05 -1.61*** -1.71*** -1.75*** -1.56*** -1.23*** -0.94*** -0.77** -0.66*
(1.11) (0.81) (0.61) (0.53) (0.45) (0.40) (0.35) (0.36) (0.37) (0.36)

rRh 2.26 1.12* 0.44 0.18 0.06 0.06 0.07 0.06 0.04 0.01
(1.84) (0.62) (0.34) (0.24) (0.17) (0.12) (0.10) (0.09) (0.08) (0.07)

D: 1980:01-2019:12 sub-sample

SR -0.75 -0.97 -1.46** -1.42** -1.50*** -1.39*** -1.17*** -0.93*** -0.77*** -0.66***
(1.23) (0.92) (0.66) (0.55) (0.47) (0.38) (0.31) (0.27) (0.25) (0.24)

rRh 3.27* 1.32* 0.53 0.31 0.15 0.10 0.08 0.06 0.02 -0.00
(1.87) (0.74) (0.39) (0.26) (0.19) (0.14) (0.10) (0.07) (0.06) (0.05)

E: Controlling for liquidity yields

SR -0.80 -0.90 -1.32 -1.20 -1.37** -1.37** -0.99** -0.61 -0.31 -0.10
(2.05) (1.31) (0.85) (0.73) (0.63) (0.56) (0.49) (0.48) (0.44) (0.39)

rRh 1.14 0.63 0.15 0.04 -0.02 -0.03 0.02 0.03 0.05 0.05
(2.67) (0.90) (0.44) (0.32) (0.23) (0.17) (0.14) (0.11) (0.09) (0.08)

ηR10y 0.06 0.06* 0.05* 0.06** 0.06*** 0.07*** 0.07*** 0.07*** 0.07*** 0.07***

(0.04) (0.03) (0.03) (0.02) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01)

Notes: Coefficient estimates on the relative yield curve slope SR
t ≡ S∗ − S from regressions with the (log) ERRP as dependent variable.

Regressions estimated using pooled end-of-month data for 6 currencies (AUD, CAD, CHF, EUR, JPY, GBP) against the USD. Log returns

are annualised. All regressions include country fixed effects. The panel is unbalanced and Driscoll and Kraay (1998) standard errors are

reported in parentheses. ∗, ∗∗ and ∗ ∗ ∗ denote significant point estimates at 10%, 5% and 1% levels, respectively. Regressions include

spot-yield differentials rR ≡ r∗h − rh as regressors. Regressions in Panel E additionally control for 10-year liquidity yields ηR
10y as

regressors.

Sub-Sample Stability. Panels B, C and D of Table 3 demonstrate that the association

between the relative slope and ERRP, against the US dollar, is robust to sub-sample splits.

Panel B presents results for a sample ending prior to the global financial crisis, 1980:01-2005:12.

Panel C shows results for a sample with the majority of time spanning the post-crisis period,

1995:01-2004:09. Panel D documents results for a pre-Covid sample, 1980:01-2019:12. In all

cases, estimated coefficients peak in magnitude at the 30-month holding period.

Liquidity Yields. We also document that the significant relationship between the relative

slope and ERRP at business-cycle horizons is robust to controlling for liquidity (or convenience)

yields (i.e., non-pecuniary returns), which Engel and Wu (2022), Jiang et al. (2021), and others

have shown are important for exchange-rate determination. To do this, we use data on the term

structure of liquidity yields from Du et al. (2018). These measure the difference between risk-

free market rates and government yields at different maturities to quantify the implicit yield

on a government bond, correcting for other frictions in forward markets and sovereign risk. Let

ηRj,t,κ denote the κ-horizon liquidity premium for a κ-horizon US government bond relative to an

equivalent-maturity Foreign government bond yield in country j. An increase in ηRj,t,κ reflects
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an increase in the relative liquidity of US Treasuries vis-à-vis country j. With these measures,

we extend regression (4) by estimating:7

y
(κ)
j,t,h = γ

(κ)
1,h

(
r∗j,t,h − rt,h

)
+ γ

(κ)
2,h

(
S∗
j,t − St

)
+ γ

(κ)
3,hηj,t,κ + f

(κ)
j,h + ε

(κ)
j,t+h (5)

where y
(κ)
j,t,h has the same definition as in regression (3) and γ

(κ)
2,h can be interpreted as the

average influence of a 1pp increase in relative US Treasury convenience. When the ERRP is

the dependent variable, we expect γ
(κ)
2,h to be positive.

The results for current returns rxFX
t,t+h are shown for the 10-year liquidity yield ηR10y in Panel

E of Table 3. As before, the relative slope coefficient is significantly associated with ERRP

at business-cycle holding periods—here 2.5 to 3.5 years. Corresponding investigation into the

dollar bond-return differences confirms that the influence of the relative slope on dollar-bond

returns predominantly works through ERRP.

Strikingly, the γ
(κ)
3,h coefficients reveal a stronger association between liquidity yields and

ERRP at longer horizons. The coefficients on relative liquidity yields rise monotonically with

respect to holding periods and grow in significance. This complements existing studies into

liquidity yields and exchange-rate dynamics (e.g., Engel and Wu, 2022; Jiang et al., 2021),

which have focused on short-horizon returns.

2.2 Macro Expectations, Relative Slopes and ERRP

Next, we explore the roots of the relationship between cross-country differences in yield-curve

slopes and ERRP. Motivated by widely studied links between country-specific yield-curve slopes

and macroeconomic outcomes (e.g., Estrella and Hardouvelis, 1991; Estrella and Mishkin, 1998;

Estrella, 2005), we investigate the relationship between relative yield-curve slopes across coun-

tries and relative business-cycle expectations using data from professional forecasters work-

ing at large financial institutions. We then show that the association between relative slopes

and ERRP at medium-term horizons is specifically associated with cross-country differences in

macroeconomic expectations.

2.2.1 Expectations and Relative Yield-Curve Slopes

We use forecasters’ expectations for GDP growth and inflation from Consensus Economics for

the period over which data is available for all G7 economies (1990:01-2022:12). The forecasts

are formed for the current year (y = 0) and the next year (y = 1). We denote the average

expectations of country-j forecasters for year-y GDP and inflation by gdp
y,e
j,t and πy,e

j,t , respec-

tively. We also use data capturing uncertainty around forecasts, labelling the cross-sectional

standard deviation of GDP and inflation expectations, across forecasters, by std(gdpy,e)j,t and

std(πy,e)j,t, respectively.

7Although the Du et al. (2018) data is available from 1991:04 for some countries and tenors, some series begin
as late as 1999:01 due to data availability. All series end in 2021:03.
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Table 4: Association between relative yield curve slope and relative business-cycle expectations

(1) (2) (3) (4) (5)
Sample: 1990:01-2019:12 1990:01-2022:12

gdp
0,e

-0.40*** -0.32*** -0.24*** -0.15**
(0.09) (0.09) (0.08) (0.07)

gdp
1,e

0.57*** 0.42*** 0.37*** 0.22*
(0.16) (0.16) (0.14) (0.11)

cpi
0,e

-0.39*** -0.38*** -0.27*** -0.30***
(0.10) (0.11) (0.09) (0.08)

cpi
1,e

-0.44*** -0.29** -0.30** -0.21
(0.13) (0.12) (0.13) (0.14)

std(gdp0,e) -0.35 -0.17
(0.48) (0.36)

std(gdp1,e) 0.31 0.06
(0.42) (0.32)

std(cpi0,e) 0.97* 1.02**
(0.50) (0.44)

std(cpi1,e) 1.04** 1.40***
(0.41) (0.34)

Constant -0.64*** -1.10*** -1.03*** -0.83*** -0.80***
(0.17) (0.15) (0.18) (0.16) (0.14)

# Countries 6 6 6 6 6
Country FE YES YES YES YES YES
Within R2 0.107 0.159 0.220 0.216 0.194

Notes: Coefficient estimates from variants of regression (6), with the relative yield curve slope as the dependent
variable. Regressions estimated using pooled end-of-month data for 6 countries (with currencies: AUD, CAD,
CHF, EUR, JPY, GBP) against the US. All regressions include country fixed effects. Driscoll and Kraay (1998)
standard errors are reported in parentheses. ∗, ∗∗ and ∗ ∗ ∗ denote significant point estimates at 10%, 5% and
1% levels, respectively.

We illustrate the link between relative business-cycle expectations and the relative yield-

curve slope by estimating variants of the following regression:

S∗
j,t − St =

∑
y=0,1

[
ϑ1

(
gdp

y,e∗
j,t − gdp

y,e
US,t

)
+ ϑ2

(
πy,e∗
j,t − πy,e

US,t

)
+ ϑ3 (std(gdp

y,e∗)j,t − std(gdpy,e)US,t) + ϑ4 (std(π
y,e∗)j,t − std(πy,e)US,t)

]
+ fj + ϵj,t (6)

Table 4 presents the estimated coefficients. Given the marked swings in macroeconomic ag-

gregates during the Covid-19 pandemic, columns (1)-(4) focus on a pre-Covid sample, 1990:01-

2019:12—though results for the 1990:01-2022:12 sample, column (5), are similar. The coeffi-

cients on average expectations for GDP, for the current and next year, and current inflation are

strongly significant in all specifications. The mean GDP-expectation coefficient changes sign

across horizon. The coefficient on the current-year expectation indicates that relatively high

near-term GDP-growth expectations are associated with a relatively flat yield curve—consistent

with higher short-term rates in booms (e.g., Wachter, 2006). In contrast, relatively high ex-

pectations for future GDP growth are associated with a relatively steep yield curve—consistent

with expectations of higher short-term interest rates in the future. The coefficients on mean
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inflation expectations are negative at both horizons, possibly indicating lower-frequency dy-

namics through price expectations: relatively high inflation expectations are associated with a

relatively flat yield curve, consistent with a need for higher short-term interest rates to stave

off persistence in the rate of price increases. In addition, column (4) highlights some role for

uncertainty about inflation in yield curve slopes, with relatively high uncertainty associated

with a relatively steep yield-curve slope—a feature that is consistent with inflation risk leading

nominal bonds to command a term premium. All in all, the four specifications—plus the sam-

ple spanning Covid—demonstrate a strong association between asymmetries in business-cycle

expectations and the relative yield-curve slope across countries, which is also consistent with

theory.

2.2.2 Expectations and Excess Currency Returns

To reconnect movements in exchange rates to fundamentals, we test whether the component of

the relative slope explained by business-cycle expectations is the main driver of ERRP dynamics

at business-cycle horizons. To do so, we recover fitted values ŜR
j,t ≡ ̂S∗

j,t − St and residuals ϵ̂j,t

from estimates of equation (6). We construct the fitted values and residuals by estimating

equation (6) on a country-by-country basis, in order to account for cross-country heterogeneity.

Pooling these estimates across countries, we then estimate variants of the following extension

to regressions (3) and (4):

y
(κ)
j,t,h = γ

(κ)
1,h

(
r∗j,t,h − rt,h

)
+ γ

(κ)
2,h Ŝ

R
j,t + γ

(κ)
3,h ϵ̂j,t + f

(κ)
j,h + ε

(κ)
j,t+h (7)

where we replace the observed relative slope S∗
j,t−St with the fitted value ŜR

j,t and additionally

include the residual ϵ̂j,t, which captures the component of the relative slope which is unexplained

by variation in macroeconomic expectations.8

Panel A of Table 5 presents the baseline results, from the regression including spot-yield

differentials for the pre-Covid period 1990:01-2019:12. The coefficient on the fitted relative

slope is significantly negative across similar holding periods to the regressions involving observed

relative yield-curve slopes (4). This setup can be understood as a spanning regression, in the

spirit of Joslin et al. (2014) indicating that the component of the relative slope explained by

cross-country asymmetries in macroeconomic expectations has explanatory power for ERRP,

orthogonal to interest rates. We investigate this relationship theoretically in Section 4.

Figure 4 plots the γ2,h and γ3,h estimates from that regression. While the coefficient es-

timates on the residual are insignificant across most holding periods in this specification, the

fitted relative slope coefficient is significant at all but the 5-year horizon. For holding peri-

ods of a year or more, the coefficients, again, peak, at the 30-month horizon. This suggests

that movements in the relative yield-curve slope attributable to changes in relative macroeco-

nomic expectations explain variation in ERRP at these intermediate horizons, over and above

8The inclusion of the fitted residual ϵ̂ alongside the fitted value ŜR from regression (6) additionally deals with
concerns about inference with generated regressors. Pagan (1984) shows that consistent inference is possible with
generated regressors when fitted values and residuals are used together in the same regression specification.
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Table 5: Estimated relationship between ERRP and the component of relative slope driven by
business-cycle expectations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Holding Periods h

6m 12m 18m 24m 30m 36m 42m 48m 54m 60m
A: Controlling for relative interest-rate differentials (1990:01-2019:12)

ŜR -2.35 -1.56 -1.49* -1.60** -1.76*** -1.66*** -1.33*** -1.09** -0.76* -0.49
(1.46) (0.96) (0.77) (0.68) (0.55) (0.48) (0.45) (0.46) (0.44) (0.40)

ϵ̂ 0.87 0.21 -0.43 -0.47 -0.72 -0.72** -0.53* -0.36 -0.34 -0.32
(1.36) (0.85) (0.61) (0.53) (0.44) (0.36) (0.30) (0.29) (0.27) (0.27)

rRh 3.33* 1.48** 0.74** 0.45* 0.23 0.17 0.15* 0.11 0.07 0.04
(1.87) (0.63) (0.35) (0.24) (0.17) (0.11) (0.09) (0.07) (0.06) (0.06)

B: Relative yield-curve slope terms only (1990:01-2019:12)

ŜR -4.13*** -2.96*** -2.42*** -2.28*** -2.15*** -1.96*** -1.62*** -1.32*** -0.91** -0.57
(1.36) (0.97) (0.81) (0.73) (0.60) (0.50) (0.47) (0.47) (0.44) (0.40)

ϵ̂ -1.11 -1.39** -1.52*** -1.27*** -1.18*** -1.09*** -0.88*** -0.64*** -0.53** -0.42*
(0.99) (0.66) (0.48) (0.40) (0.31) (0.25) (0.23) (0.24) (0.24) (0.23)

C: Controlling for relative interest-rate differentials (1990:01-2022:12)

ŜR -2.41* -1.71* -1.61** -1.71** -1.84*** -1.69*** -1.36*** -1.10** -0.78* -0.51
(1.45) (0.99) (0.78) (0.69) (0.55) (0.47) (0.44) (0.45) (0.43) (0.39)

ϵ̂ 0.56 0.02 -0.54 -0.66 -0.90** -0.84** -0.65** -0.43 -0.35 -0.31
(1.20) (0.75) (0.53) (0.47) (0.40) (0.34) (0.29) (0.28) (0.27) (0.26)

rRh 2.61 1.22** 0.61** 0.35 0.16 0.12 0.11 0.09 0.07 0.04
(1.69) (0.56) (0.31) (0.22) (0.15) (0.11) (0.08) (0.07) (0.06) (0.06)

Notes: Coefficient estimates on the fitted relative yield curve slope ŜR
t and residual ϵ̂, estimated from regression (6), with the (log)

ERRP as dependent variable. Regressions estimated using pooled end-of-month data for 6 currencies (AUD, CAD, CHF, EUR, JPY,

GBP) against the USD. Log returns are annualised. All regressions include country fixed effects. Driscoll and Kraay (1998) standard

errors are reported in parentheses. ∗, ∗∗ and ∗ ∗ ∗ denote significant point estimates at 10%, 5% and 1% levels, respectively.

Figure 4: Estimated coefficients for fitted relative slope and residual from ERRP regressions
across holding periods when controlling for relative spot-yield differentials
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Notes: γ̂2,h (maroon circles) and γ̂3,h (grey crosses) estimates from regression (7) for exchange-rate risk premia.

Horizontal axis denotes the holding period h in months. Regressions estimated using pooled monthly data for

6 currencies (AUD, CAD, CHF, EUR, JPY, GBP) against the USD from 1990:01 to 2019:12, including country

fixed effects. 95% confidence intervals, calculated using Driscoll and Kraay (1998) standard errors, denoted by

shaded areas/bars around point estimates.

spot-yield differentials.

Panels B and C of Table 5 report results from two supportive robustness exercises. Panel B

reports coefficient estimates from regression (7) excluding spot-yield differentials. It continues

to indicate that the fitted relative slope component is the predominant driver of ERRP. Panel
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C reports estimates from regression (7) including spot-yield differentials for the full 1990:01-

2022:12 sample. In spite of the inclusion of Covid-19 in the sample, where macroeconomic

dynamics and their expectations were distinct from previous periods, variation in the relative

slope fitted with macroeconomic expectations continue to act at the predominantly driver of

ERRP—most strongly so at the 2.5-year horizon.

3 Preference-Free Theoretical Setup

Next, we present a no-arbitrage, preference-free framework and derive the conditions required

to replicate the relationship between relative yields, relative yield-curve slopes and ERRP.

3.1 Pricing Kernels and Stochastic Discount Factors

The model has two countries: Home (base currency, US) and Foreign (denoted by an *), each

populated by representative investor—which we later generalize in Section 4.2. The Home

nominal pricing kernel Vt represents the marginal value of a currency unit at time t. No

arbitrage implies the existence of a nominal SDF Mt,t+κ, which is given by the growth rate

of the pricing kernel between periods t and t + κ: Mt,t+κ = Vt+κ/Vt. We make the following

assumption about trade in bonds:

Assumption 1 Investors in both countries can trade freely in Home- and Foreign-currency

denominated risk-free bonds of maturities κ.

The price of a Home zero-coupon bond that promises one currency unit κ periods into the

future is given by: Pt,κ = Et [Mt,t+κ] = Et [Mt,t+1Pt+1,κ−1], whereMt,t+1 denotes the one-period

SDF and, by recursive substitution, Mt,t+κ ≡
∏κ−1

i=0 Mt+i,t+i+1. Defining the gross return on a

Home κ-period zero-coupon bond as Rt,κ ≡ 1/Pt,κ ≡ (1 + rt,κ) ≥ 1, then:

1

Rt,κ
= Et [Mt,t+κ] (8)

which can be expanded as:

−rt,κ = Et[mt,t+κ] + Lt(Mt,t+κ), (9)

where mt,t+κ = lnMt,t+κ and Lt (Mt,t+κ) = lnEt[Mt,t+κ] − Et[mt,t+κ] denotes the conditional

multi-period entropy of the SDF. If we assume one-period SDFs, M
(∗)
t,t+1 are log-normally dis-

tributed, then (9) evaluated at κ = 1 is equivalent to: 1
2vart (mt,t+1) = Lt(Mt,t+1). However,

multi-period SDFs (κ > 1) will generally not be log-normally distributed if risk is heteroskedas-

tic. Foreign expressions are analogously derived.

Based on (9), the following assumption delivers stable risk-free rates:

Assumption 2 Stochastic discount factors Λt+1

Λt
and

Λ∗
t+1

Λ∗
t

are jointly stationary.

17



3.2 Transitory Risks and the Yield Curve

To understand sources of risk in the yield curve, we then use the following Alvarez and Jermann

(2005) decomposition of the pricing kernel Vt into a permanent component V P
t and a transitory

component V T
t :

Vt = V P
t V

T
t , where V T

t = lim
κ→∞

δt+κ

Pt,κ
(10)

where the constant δ is chosen to satisfy the regularity condition: 0 < limκ→∞ Pt,κ/δ
κ < ∞ for

all t. A pricing kernel Vt is defined as having only transitory innovations if limκ→∞
Et+1[Vt+κ]
Et[Vt+κ]

=

1. So, its permanent component follows a martingale, defined by: V P
t = limκ→∞

Et[Vt+κ]
δt+κ .

Importantly, the infinite-maturity bond can be written as a function of transitory innovations

to SDFs only: Rt,∞ = limκ→∞Rt,κ = V T
t /V T

t+1 = 1/MT
t,t+1 = exp(−mT

t,t+1), where mT
t,t+1

denotes the transitory component of the SDF. In contrast, one-period bond returns, defined by

equation (8), depend on both transitory and permanent innovations to SDFs.

More generally, only transitory risk is reflected across the term structure of interest rates.

Define the (log) excess return from buying a n-period Home bond at time t for price Pt,n = 1/Rt,n

and selling it at time t + 1 for Pt+1,n−1 = 1/Rt+1,n−1 as rx
(n)
t,t+1 = pt+1,n−1 − pt,n − yt,1, where

pt,n ≡ log(Pt,n) and yt,n ≡ − 1
npt,n ≡ 1

nrt,n is the annualized yield on a n-period bond. Assuming,

for convenience, SDFs and prices are jointly log-normally distributed, this excess return can be

written as:

Et

[
rx

(n)
t,t+1

]
+

1

2
vart (rt+1,n) = −covt

(
mT

t,t+1,Et+1

n−1∑
i=1

mT

t+i,t+i+1

)
(11)

Over long enough samples, this risk premium is approximately equal to the yield-curve slope,

Et[rx
(n)
t,t+1] ≈ St where St ≡ yt,n − yt,1, implying that the yield curve will be upward sloping on

average if the covariance term is negative (Piazzesi and Schneider, 2007).9

The bond premium is positive if today’s one-period SDF is negatively correlated with ex-

pected future marginal utility, consistent with a notion of transitory ‘business-cycle’ risk. That

is, if households receive relatively good news about the distant future, they expect to value

consumption less at long horizons (i.e., lower Et[mt+i,t+i+1] for some i > 0), but relatively

highly in the near term (i.e., higher mt,t+1). It follows that the relative yield-curve slope S
∗
t −St

captures asymmetry or asynchronicity in transitory business-cycle risk across countries.

3.3 Exchange Rates and Currency Risk Premia

Finally, we explore how the sources of risk reflected in the yield curve impact exchange rates.

Define the exchange rate Et as the Foreign price of a unit of Home currency such that an increase

corresponds to a Foreign depreciation. When engaging in cross-border asset trade, the Euler

9To derive this, re-write the excess return rx
(n)
t,t+1 as: pt+1,n−1 − pt,n − yt,1 = nyt,n − (n− 1)yt+1,n−1 − yt,1 =

yt,n − yt,1 − (n − 1)(yt+1,n−1 − yt,n). Over a long enough sample and with large n, the difference between the

average (n− 1)-period yield and the average n-period yield is zero, implying that Et[rx
(n)
t,t+1] ≈ yt,n − yt,1 ≡ St.
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equation for a Home investor holding a κ-period Foreign currency-denominated bond is:

1 = Et

[
Mt,t+κ

Et
Et+κ

R∗
t,κ

]
(12)

By no arbitrage, the change in the nominal exchange rate corresponds to the ratio of SDFs:

Et+κ

Et
=

Mt,t+κ

M∗
t,t+κ

eηt,t+κ (13)

for all κ > 0, where ηt,t+κ is the log incomplete-markets wedge as defined in Backus et al. (2001),

such that ηt,t+κ = 0 characterizes complete markets. For simplicity, we assume internationally

complete markets, but Appendix B.2.1 shows this does not drive our results. In the complete-

markets case, equation (13) shows that the stationarity of exchange-rate changes follows from

the stationarity of SDFs.

The (log) κ-period ex-ante currency risk premium Et[rx
FX
t,t+κ] can be written as the difference

in entropy of the Home and Foreign SDFs:

1

κ
Et

[
rxFX

t,t+κ

]
=

1

κ

(
r∗t,κ − rt,κ −Et [et+κ]− et +Et[ηt,t+κ]

)
=

1

κ

(
Lt (Mt,t+κ)− Lt

(
M∗

t,t+κ

))
(14)

This is the multi-period generalization of the one-period UIP return (e.g., Engel, 2016).

Lustig et al. (2019) show the failure to reject long-horizon UIP implies the equalization of

the entropy of permanent SDF components. We formalize this assumption as:

Assumption 3 The entropy of the permanent components of SDFs is roughly equal across

countries Lt

(
MP

t,t+κ

)
≈ Lt

(
MP ∗

t,t+κ

)
.

Imposing this assumption, then (15) implies:

1

κ
Et

[
rxFX

t,t+κ

]
≈ 1

κ

(
Lt

(
MT

t,t+κ

)
− Lt

(
MT ∗

t,t+κ

))
(15)

Consequently, short and medium-horizon ERRP must reflect cross-country differences in the

volatility of transitory innovations to SDFs resulting in a clear theoretical association between

relative yield-curve slopes and ERRP, operating through transitory risk.

4 Implications for International Asset Pricing and ‘Disconnect’

Having established that the association between yield-curve slopes and ERRP can be ratio-

nalized within the preference-free no-arbitrage framework laid out in Section 3, we investigate

the broader implications of this relationship for international asset pricing debates around the

‘disconnect’ of exchange rates from fundamentals.

To make progress on this, we derive the restrictions implied on SDFs by our empirical results.
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First, we define innovations ϵ̃ such that:

ϵ̃ =
{
ϵ : proj(S∗

t − St|ϵ) < 0 & proj(r∗t,κ − rt,κ|ϵ) = 0 for some κ ≥ 1
}

(16)

That is, following an increase in ϵ̃, the Home slope becomes relatively steeper but interest-rate

differentials of some maturity κ are unchanged. As long as Home households invest frictionlessly

in the Home bond (9), per Assumption 1, this implies that movements in the conditional mean

and variance of SDFs must perfectly offset for these innovations to not drive κ-maturity interest

rates:10

proj(Et[mt,t+κ] |ϵ̃t) = −proj(Lt(Mt,t+κ) |ϵ̃t) (17)

Consistent with equation (11), these innovations must drive the autocovariance of the SDF

in order to be reflected in the yield-curve slope and we know from our regressions that they are

relevant for ERRP determination, proj(Et[rx
FX
t+κ] > 0). In Section 4.2, we address the natural

question of whether such restriction are plausible. We argue these restrictions are not only

reasonable, but they necessarily emerge as equilibrium outcomes in a large class of incomplete-

markets models.

4.1 A Stylized Model of Interest Rates and Exchange Rates

We specify a minimal model for exchange rates and the term structure of interest rates to

highlight the role of transitory, yet unspanned, innovations to SDFs, and show how they map

to the innovations detailed in (16). Our setup builds on Backus, Chernov, and Zin (2014)

who consider a single transitory risk factor (denoted by T) that is fully spanned by interest

rates, resembling a truncated Vasicek (1977) model. Relative to this, we extend the model with

two unspanned factors, a permanent factor (P) which drives exchange-rate volatility, but is

not reflected in the term structure of interest rates (Alvarez and Jermann, 2005; Chernov and

Creal, 2023), and a novel unspanned-transitory factor (d) which is necessary for explaining the

relationship between ERRP and the relative slope.

We do not take a stance on the specific interpretation of these factors. Rather we carry out a

risk-accounting exercise to assess which factors explain which empirical regularities. Neverthe-

less, our evidence in Section 2.2 suggests that the transitory innovations are closely related to

expectations of future macroeconomic fundamentals. Additionally, although this initial model

is static model, it still allows us to map average empirical evidence at different horizons. Later,

Section 4.3 demonstrates how the results generalize to a setting with time-varying volatility.

Let the (log) one-period SDF of the representative Home investor be decomposed as:

mt,t+1 = mT

t,t+1 +mP

t,t+1 (18)

We assume the (truncated) Wold decompositions of the transitory and permanent components

10Hassan, Mertens, and Wang (2024) emphasize the tension between models that generate a negative functional
relationship between the mean and variance of SDFs and the unpredictability of exchange rates. Given that we
are specifically focusing on the predictable component, orthogonal to short rates, our results are consistent.
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can, respectively, be written as:

mT

t,t+1 = log β − 1

2
γσ2

T + α0ϵT,t+1 + α1ϵT,t−
1

2
δσ2

d + d0ϵd,t+1 + d1ϵd,t︸ ︷︷ ︸
unspanned transitory factor

(19)

mP

t,t+1 =− 1

2
σ2
P + ϵP,t+1 (20)

where ϵi,t denote shocks to risk factors i = T, d,P which we assume are i.i.d. mean zero, have

constant variance σ2
i and are normally distributed. Foreign variables are defined analogously

and denoted with asterisks.

In our risk-accounting exercise, we analyze which factor volatilities (i.e., σ2
i for i = T, d,P)

are reflected in exchange rates, (relative) yields and the (relative) yield-curve slope. The key

results rely only on Assumptions 1 and 2.11 Per Assumption 2, we assume SDFs are stationary,

and, as in the supplement to Alvarez and Jermann (2005), we set the mean of the (log) perma-

nent component (−1
2σ

2
P) to be non-zero and counteract the variance. The transitory component

can be unrestricted (i.e., γ, δ need not equal to 1). We focus on a setting with symmetric factor

loadings αi = α∗
i , but allow for asymmetry in factor volatilities (i.e., σi ̸= σ∗

i for i = T, d,P).

Combining (9) with (18), the κ-period bond yield can be written as a function of both

transitory factors’ volatilities, σT and σd:

−yt,κ = log β +
1

κ

[
(d20 − κδ) + (d1 + d0)

2(κ− 1)
] σ2

d

2

+
1

κ

[
(α2

0 − κγ) + (α1 + α0)
2(κ− 1)

] σ2
T

2
(21)

Critically, imposing Assumption 1 such that the SDF restriction (17) applies for κ = 1, we

require δ = d20. With this, the short-term interest rate rt = yt,1 is a function of only the spanned-

transitory factor volatility and is ‘disconnected’ from the unspanned-transitory factor volatility.

Furthermore, the relationship with its volatility σT will be negative as long as α2
0 − γ > 0 (i.e.,

when precautionary-savings motives dominate). This is consistent with models of habits and

long-run risk (e.g., Engel, 2016) that generate the correct sign for UIP deviations—since excess

returns to Foreign currency are positive when Home volatility is high (Verdelhan, 2010).

However, the volatility of the unspanned-transitory factor, σd, will still be captured in the

yield-curve slope, S
(κ)
t = y

(κ)
t − rt:

St =

(
1− 1

κ

)[
d20 − (d1 + d0)

2
] σ2

d

2
+

(
1− 1

κ

)[
α2
0 − (α1 + α0)

2
] σ2

T

2
(22)

Evaluating (14), the κ-horizon ERRP reflects asymmetries across countries in all three

11We do not require Assumption 3 which would further impose α0 = −α1 and d0 = −d1, but our results are
robust to this. To see this, note that in the absence of permanent risk, the bond premium must equal half the
variance of the SDF.
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factors:

Et[rx
FX
t+κ] =

1

κ

[
d20 + (d1 + d0)

2(κ− 1)
] (σ2

d

2
−

σ∗ 2
d

2

)
+
1

κ

[
α2
0 + (α1 + α0)

2(κ− 1)
] (σ2

T

2
−

σ∗ 2
T

2

)
+

(
σ2
P

2
−

σ∗ 2
P

2

)
(23)

Since the relative slope will reflect cross-country asymmetries in the volatilities of both tran-

sitory factors, this leaves scope for the relative slope to have explanatory power for ERRP over

and above the short rate per our empirical findings. The following proposition then summarizes

this key result:

Proposition 1 (Risk, Bond Yields and ERRP) An increase in the factor volatilities σi

for i ∈ {T,P} are both associated with a higher ERRP
dEt[rxFX

t+κ]

dσi
> 0, for κ < ∞, but cannot

be associated with a relatively steep yield-curve slope dSt
dσi

> 0 without also being reflected in

short interest-rate differentials
dyt,1
dσi

> 0. In contrast, the volatility of the hidden factor (σd) can

match these facts if and only if δ = d20.

Proof: See Appendix B.1.

The proposition above shows that only σd can satisfy the restriction for SDF dynamics (17),

such that there are movements in the relative slope which are orthogonal to short yields. Put

differently, only σd ∈ ϵ̃ (see (16), emphasizing the role of these innovations for exchange-rate

dynamics. More generally, our spanning regression (7) implies that σd reflects macroeconomic

expectations and, if so, the model delivers a disconnect from short yields, but not a disconnect

from fundamentals which are captured by the relative slope.

We can further extend this to rationalize the differential association between relative slope

and ERRP across horizons. We consider an illustrative three-horizon case with a short-,

medium- and long-run, where the orthogonal relationship between ERRP and relative yield-

curve slope occurs the medium-run horizon, speaking directly our empirical findings. To do

this, we generalize our framework such that the choice of δ imposes (17) for κ > 1 to ensure σd

is unspanned in longer-maturity interest rates. Moreover, we enforce Assumption 3 (implying

σP = σ∗
P
, α0 ≈ −α1, d0 ≈ −d1) so the model can jointly deliver stylized facts at short and

intermediate horizons.12

The following proposition generalizes the disconnect of ERRP to spot yields of some inter-

mediate tenor κ and, as a result, short-term yields can have some relationship with exchange

rates in line with the UIP puzzle:

Proposition 2 (Horizon Variation) An increase in σd is associated with both: (i) an in-

crease in medium horizon ERRP
dEt[rxFX

t+κ]

dσd
> 0 and a steeper relative slope dSt

dσd
> 0, but is not

12As shown by Lustig et al. (2019), carry-trade returns at long horizons are zero (and thus unpredictable) if
there are no differences in the permanent innovations of SDFs across countries. Notably, Andrews, Colacito,
Croce, and Gavazzoni (2024) find evidence that rxCT (∞) = 0 only because it is negative before and positive
post-GFC. Consistently, Chernov and Creal (2020) argue the evidence for zero ERRP at long horizons appears
weak.
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reflected in κ−maturity yields
dyt,κ
dσd

= 0, (ii) an increase in short horizon expected currency

returns
dEt[rxFX

t+1]

dσd
> 0 and a fall in the short rate differential

dyt,1
dσd

< 0, if and only if:

δ = 1
κd

2
0 + (d0 + d1)

2(κ− 1) (24)

Additionally, (iii) in the long run, ERRP are zero.

Proof: See Appendix B.1.

4.2 Endogenizing Hidden Factors via Domestically Incomplete Markets

Term-structure models like this are almost exclusively written under complete markets ,where

there can only exist a unique SDF. Here, we show that our hidden (or unspanned) transitory

factor can arise as an equilibrium outcome in a large class of incomplete-markets models. The

generalized model is consistent with no-arbitrage pricing by the SDF mt+1 (18), but the struc-

ture of risk is constrained due to trade in assets by an additional investor with SDF m̃t+1—ruled

out if domestic financial markets were complete. This setup relates to models of incomplete

markets and limited participation such as Guvenen (2009) and Marin and Singh (2024), as well

as models of preferred habitat as in Gourinchas et al. (2022) and Greenwood et al. (2023), and

carries implications for fully specified models.

Compared to the previous section, suppose there exists a second investor in the Home

country with the SDF:13

m̃t+1 = log β − 1

2
σ2
T
+ α0ϵT,t+1 + α1ϵT,t

We then make the following adaption to Assumption 1:

Assumption 1′ Both investors in the Home country (mt,t+1, m̃t,t+1) trade frictionlessly in

domestic bonds with maturities κ ∈ κ̃. Only the investor characterized by mt,t+1 can additionally

trade frictionlessly in Foreign assets.

The combination of the additional investor and Assumption 1′ delivers the following propo-

sition:

Proposition 3 (Incomplete Markets and Hidden Factors) Suppose κ̃ = 1 such that

only the risk-free rate is traded by both m and m̃. No arbitrage requires δ = d20. More generally,

for any κ ∈ κ̃ maturity traded, condition (24) is required to satisfy no-arbitrage.

Proof: Consider the set of conditions E[Mt,t+κ] = E[M̃t,t+κ] = 1/R
(κ)
t ∀ κ ∈ κ̃ which reflect

risk-sharing between agents at horizon κ̃. Once again, under complete markets κ̃ = R, which
implies the mean (and variance) of all multi-horizon SDFs is equalized.

13Notice, this is a normalization. More generally, we can consider mi
t,t+1 = log(Di

t,t+1Mt,t+1) and interpret
the expectations above as cross-sectional (see also Constantinides and Duffie, 1996b; Marin and Singh, 2024).
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Intuitively, bonds traded by both investors only price risks which both investors face and

agree upon. In the spirit of preferred-habitat models, ϵd,t+1 can reflect investor-specific demand

shocks, which drive both the term structure of interest rates and exchange rates. Since m̃t+1

does not face these habitat shocks, the only equilibrium consistent with no arbitrage requires δ

such that (17) holds.14

4.3 A Dynamic Asset-Pricing Model

Finally, we show our results generalize to a canonical dynamic asset-pricing model with stochas-

tic volatility, building on a two-country version of the Cox et al. (1985) model, studied in Backus

et al. (2001) and Lustig et al. (2019), amongst others. The purpose of this section is to show

our results generalize to canonical asset pricing models in the literature, which have also been

shown to capture key features of equilibrium models (e.g. Campbell and Cochrane, 1999; Bansal

and Shaliastovich, 2013). We relegate derivations to the Appendix B.3.

Consider a representative Home investor’s SDF which loads on three independent country-

specific factors z0,t, z1,t, z2,t:

−mt,t+1 = z0,t + (λ2
1/2− 1)z1,t + λ1

√
z1,tϵt+1 + (λ2

2/2)z2,t + λ2
√
z2,tϵ2,t+1, (25)

zi,t+1 = (1− ϕi)z2,t + ϕizi,t − σi
√
zi,tϵi,t+1, for i ∈ {0, 1}

z2,t+1 = (1− ϕ2)θ + ϕ2z2,t − σ2
√
z2,tϵ2,t+1

where λ1, λ2 < 0 are coefficients which capture the price of risk with respect to each factor (see

also, Backus et al., 1998, 2001; Lustig and Verdelhan, 2019). This setup resembles the model

of central tendency in Balduzzi et al. (1998) where z2,t captures the long-run mean of the short

rate.15 To keep notation simple, we assume z0,t has a zero price of risk. The representative

Foreign investor’s SDF m∗
t,t+1 and country-specific pricing factors z∗i,t are defined analogously,

and with symmetric coefficients (λ∗
i = λi, ϕ

∗
i = ϕi, and σ∗

i = σi).

As is standard, assuming log-normality, combining (25) and the expression for the (log) price

of an n-period bond, pt,n = Et[mt,t+1 + pt+1,n−1] + (1/2)vart(mt,t+1 + pt+1,n−1), we can write

(log) bond prices as affine functions of pricing factors pt,n = − (Ωn +Anz0,t +Bnz1,t + Cnz2,t),

where Ωn, An, Bn and Cn are recursively defined.

Hidden Factors in CIR. Once again, the SDF (25) can be interpreted as an equilibrium

outcome from an incomplete markets model. Define a SDF m̃t,t+1 which is identical to mt,t+1

14Alternatively, domestic market incompleteness may arise because investors have heterogeneous expectations
over the same fundamentals. To consider this, define a new subjective expectation operator Ẽt. If investors agree
on risks in the limit, markets are de-jure complete. In contrast, if there is disagreement, the second investor
underestimates the d-factor. In this case, the only admissible equilibrium with trade in the one-period bond
(κ̃ = 1) has a hidden factor, per Proposition 3. A further example would be a model of intermediation (e.g.,
Gabaix and Maggiori, 2015). Here, the SDF mt,t+1 would additionally capture frictions (or different preferences)
faced by the intermediary, not faced by the household m̃t,t+1, i.e., the d- factor.

15Ang and Chen (2010) provide direct evidence for the importance of a time-varying long-run mean. Kozicki
and Tinsley (2001) identify monetary policy and long run expectations as a good proxy for z2,t, providing a
supporting economic interpretation of this factor.
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except that it does not depend on z2,t—i.e., λ̃2 = 0. If both investors trade the short bond,

no-arbitrage requires C0 = 0, which is satisfied in the model above. More generally, one can

express the model with a conditional mean of (λ2
1/2−1)z1,t+(λ2

2/2+ ζ)z2,t, leaving conditional

variance unchanged. Then, ζ must be 0 to satisfy no arbitrage. Critically, however, there are

additional requirements for subsequent Cn to be non-zero, such that the term structure captures

information for z2,t, specific to the dynamic model and detailed below.16

Term Structure. An immediate consequence of (25) is that short rates are given by r
(∗)
t =

z
(∗)
0,t − z

(∗)
1,t and are countercyclical with respect to z1, implying Bn < 0—consistent with Backus

et al. (1998); Verdelhan (2010). Absent additional factors, this counterfactually implies a neg-

ative average slope of the yield curve and bond premium (Wachter, 2006) and increasingly

negative longer-horizon UIP deviations (Lustig et al., 2019). The ex ante bond risk premium

is given by:

Et

[
rx

(∞)
t,t+1

]
+

1

2
vart(rn,t+1) =− covt(pt+1,n−1,mt,t+1)

=−λ1σ1Bn−1︸ ︷︷ ︸
<0

z1,t − λ2σ2Cn−1z2,t (26)

and additionally depends on ϵ2,t which is hidden from rt.

The next proposition details necessary conditions for this framework to deliver our empirical

findings.

Proposition 4 (Bond Yields and ERRP in CIR) In the model described by (25), a

relatively steep Home yield-curve slope (St > S∗
t ) can be associated with higher future ERRP

(Et[rx
FX
t,t+κ]), orthogonal to short-rate differentials, only if the loading on z2,t is positive at longer

maturities (Cn > 0) which, in turn, requires z0,t to tend to z2,t.

Proof: See Appendix B.1.

This proposition illustrates that our thesis—namely that factors hidden from spot yields

but reflected in yield curves drive ERRP—is compatible with a larger class of dynamic models,

but requires a model of central tendency. Within the dynamic framework, it demonstrates that

condition (17) is compatible with other salient features of the data, such as a positive yield-curve

slope and short-run UIP differentials. The sufficient condition to deliver Cn > 0, required for

a positive yield-curve slope, is for z2,t to be persistent (ϕ2 > ϕ1)—which also rationalizes why

the relative yield-curve slope especially matters at intermediate (as opposed to short or long)

horizons.

Moreover, the model with time-varying volatility is sufficiently rich to speak to the regression

evidence and account for a zero or near-zero R2 coefficient of a regression of future exchange-

rate changes (see Appendix B.3) on short-maturity interest rate differentials in the limit when

var(z2,t) is very high—while Proposition 4 implies a higher R2 if the regression additionally

includes yield-curve slopes which captures the hidden factor.

16Appendix B.3.1 generalizes hidden factors to longer tenors.
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5 Conclusion

Overall, our paper highlights that a significant component of currency fluctuations and ERRP,

at business-cycle horizons in particular, can be explained by cross-country differences in the term

structure of interest rates. Preference-free results derived assuming no-arbitrage suggest this is

driven by cross-country differences in the autocorrelation of investor valuations (SDFs) across

countries, consistent with a notion of (transitory) business-cycle risk. To corroborate this, we

turn to evidence that survey data on expectations for GDP and inflation explain relative yield-

curve slopes. Then, regressing exchange-rate movements on the fitted component of the relative

yield-curve slope, we find that cross-country asymmetries in macroeconomic expectations are a

significant determinant of ERRP, orthogonal to interest rates, especially at 2 to 4-year horizons.

In addition to finding evidence that currency fluctuations reflect expectations of macroeco-

nomic fundamentals, we illustrate the importance of transitory factors which can be ‘hidden’

from short-term interest rates because of offsetting effects on the conditional mean and variance

of SDFs. As such, these factors are consistent with the literature on the exchange-rate ‘discon-

nect’, while still being captured by the yield-curve slope. Going a step further, we show that

market incompleteness is a plausible mechanism which generates hidden factors as endogenous

outcomes in equilibria with trade.

References

Alvarez, F., A. Atkeson, and P. J. Kehoe (2009): “Time-varying risk, interest rates, and exchange

rates in general equilibrium,” The Review of Economic Studies, 76, 851–878.

Alvarez, F. and U. J. Jermann (2005): “Using Asset Prices to Measure the Persistence of the

Marginal Utility of Wealth,” Econometrica, 73, 1977–2016.

Anderson, N. and J. Sleath (2001): “New estimates of the UK real and nominal yield curves,” Bank

of England Staff Working Paper 126, Bank of England.

Andrews, S., R. Colacito, M. M. Croce, and F. Gavazzoni (2024): “Concealed carry,” Journal

of Financial Economics, 159, 103874.

Ang, A. and J. S. Chen (2010): “Yield Curve Predictors of Foreign Exchange Returns,” AFA 2011

Denver Meetings Paper.

Backus, D. K., M. Chernov, and S. Zin (2014): “Sources of Entropy in Representative Agent

Models,” The Journal of Finance, 69, 51–99.

Backus, D. K., S. Foresi, and C. I. Telmer (1998): “Discrete-Time Models of Bond Pricing,”

NBER Working Papers 6736, National Bureau of Economic Research, Inc.

——— (2001): “Affine Term Structure Models and the Forward Premium Anomaly,” Journal of Finance,

56, 279–304.

Bakshi, G., J. Crosby, X. Gao, and J. W. Hansen (2023): “Treasury option returns and models

with unspanned risks,” Journal of Financial Economics, 150, 103736.

Balduzzi, P., S. Das, and S. Foresi (1998): “The Central Tendency: A Second Factor In Bond

Yields,” The Review of Economics and Statistics, 80, 62–72.

Bansal, R. and I. Shaliastovich (2013): “A Long-Run Risks Explanation of Predictability Puzzles

in Bond and Currency Markets,” Review of Financial Studies, 59, 1481–1509.

26



Basu, S., G. Candian, R. Chahrour, and R. Valchev (2021): “Risky Business Cycles,” Working

Paper 28693, National Bureau of Economic Research.

Campbell, J. H. and R. Shiller (1991): “Yield Spreads and Interest Rate Movements: A Bird’s Eye

View,” Review of Economic Studies, 58, 495–514.

Campbell, J. Y. and J. H. Cochrane (1999): “Force of Habit: A Consumption-Based Explanation

of Aggregate Stock Market Behavior,” Journal of Political Economy, 107, 205–251.

Candian, G. and P. De Leo (2023): “Imperfect Exchange Rate Expectations,” The Review of Eco-

nomics and Statistics, forthcoming.

Chahrour, R., V. Cormun, P. De Leo, P. Guerron-Quintana, and R. Valchev (2021): “Ex-

change Rate Disconnect Redux,” Boston College Working Papers in Economics 1041, Boston College

Department of Economics.

Chen, Y.-c. and K. P. Tsang (2013): “What Does the Yield Curve Tell Us about Exchange Rate

Predictability?” The Review of Economics and Statistics, 95, 185–205.

Chernov, M. and D. Creal (2020): “The PPP View of Multihorizon Currency Risk Premiums,” The

Review of Financial Studies, 34, 2728–2772.

——— (2023): “International yield curves and currency puzzles,” Journal of Finance, 78, 209–245.

Chernov, M., V. Haddad, and O. Itskhoki (2024): “What do Financial Markets say about the

Exchange Rate?” Working Paper 32436, National Bureau of Economic Research.

Chinn, M. D. and G. Meredith (2005): “Testing Uncovered Interest Parity at Short and Long

Horizons during the Post-Bretton Woods Era,” NBER Working Papers 11077, National Bureau of

Economic Research, Inc.

Chinn, M. D. and S. Quayyum (2012): “Long Horizon Uncovered Interest Parity Re-Assessed,” NBER

Working Papers 18482, National Bureau of Economic Research, Inc.

Cochrane, J. H. and M. Piazzesi (2005): “Bond Risk Premia,” American Economic Review, 95,

138–160.

Colacito, R., S. J. Riddiough, and L. Sarno (2020): “Business cycles and currency returns,”

Journal of Financial Economics, 137, 659–678.

Constantinides, G. M. and D. Duffie (1996a): “Asset pricing with heterogeneous consumers,”

Journal of Political Economy, 104, 219–240.

——— (1996b): “Asset Pricing with Heterogeneous Consumers,” Journal of Political Economy, 104,

219–240.

Corsetti, G., S. P. Lloyd, and E. A. Marin (2020): “Uncovered Interest Parity, Yield Curve

Inversions and Rare Disasters,” mimeo.

Cox, J., J. Ingersoll, and S. Ross (1985): “A Theory of the Term Structure of Interest Rates,”

Econometrica, 53, 385–407.

Driscoll, J. C. and A. C. Kraay (1998): “Consistent Covariance Matrix Estimation With Spatially

Dependent Panel Data,” The Review of Economics and Statistics, 80, 549–560.

Du, W., J. Im, and J. Schreger (2018): “The U.S. Treasury Premium,” Journal of International

Economics, 112, 167–181.

Engel, C. (2016): “Exchange Rates, Interest Rates, and the Risk Premium,” American Economic

Review, 106, 436–474.

Engel, C. and S. P. Y. Wu (2022): “Liquidity and Exchange Rates: An Empirical Investigation,”

The Review of Economic Studies, 90, 2395–2438.

Estrella, A. (2005): “Why Does the Yield Curve Predict Output and Inflation?” Economic Journal,

115, 722–744.

27



Estrella, A. and G. Hardouvelis (1991): “The Term Structure as a Predictor of Real Economic

Activity,” Journal of Finance, 46, 555–76.

Estrella, A. and F. Mishkin (1998): “Predicting U.S. Recessions: Financial Variables As Leading

Indicators,” The Review of Economics and Statistics, 80, 45–61.

Fama, E. F. (1984): “Forward and spot exchange rates,” Journal of Monetary Economics, 14, 319–338.

Fama, E. F. and R. R. Bliss (1987): “The Information in Long-Maturity Forward Rates,” American

Economic Review, 77, 680–92.

Gabaix, X. and M. Maggiori (2015): “International Liquidity and Exchange Rate Dynamics,” The

Quarterly Journal of Economics, 130, 1369–1420.

Gourinchas, P.-O., W. D. Ray, and D. Vayanos (2022): “A Preferred-Habitat Model of Term

Premia, Exchange Rates, and Monetary Policy Spillovers,” NBER Working Papers 29875, National

Bureau of Economic Research, Inc.
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Appendix

A Additional Information on Empirical Analysis

A.1 Data Sources

We use nominal zero-coupon government bond yields at maturities from 6 months to 10 years

for 7 industrialised countries: US, Australia, Canada, Euro Area, Japan, Switzerland and UK.

Our benchmark sample spans 1980:01-2024:09, although the panel of interest rates is unbal-

anced as bond yields are not available from the start of the sample in all jurisdictions. Table

A1 summarizes the sources of nominal zero-coupon government bond yields, and the sample

availability, for the benchmark economies in our study.

Table A1: Yield Curve Data Sources

Country Sources Start Date

US Gürkaynak, Sack, and Wright (2007) 1971:11

Australia Reserve Bank of Australia 1992:07

Canada Bank of Canada 1986:01

Euro Area Bundesbank (German Yields) 1980:01

Japan Wright (2011) and Bank of England 1986:01

Switzerland Swiss National Bank 1988:01

UK Anderson and Sleath (2001) 1975:01

Notes: Data from before 1980:01 are not used in this paper.

Exchange-rate data is from Eikon, reflecting spot rates vis-à-vis the US dollar. Liquidity
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yields are from Du et al. (2018), available at the 1, 2, 3, 5, 7 and 10-year maturities. The earliest

liquidity yields are available from 1991:04 for some countries (e.g., UK) and end in 2021:03. The

latest liquidity yields are available from 1999:01 (e.g., euro area). For both exchange rates and

liquidity yields, we use end-of-month observations.

A.2 Canonical and Augmented UIP Regressions

This appendix provides additional detail about our motivational analysis in Figure 1.

The canonical UIP regression for κ-month-ahead exchange-rate changes is:

ej,t+κ − ej,t = β1,κ
(
r∗j,t,κ − rt,κ

)
+ fj,κ + uj,t+κ (A1)

where ej,t ≡ log(Ej,t) is the (log) exchange rate of the Foreign country j vis-à-vis Home (base)

currency at time t. It is defined as the Foreign price of a unit of base currency such that an

increase in ej,t corresponds to a Foreign depreciation. r∗j,t,κ is the net κ-period continuously-

compounded return in the Foreign country and rt,κ is the corresponding Home return. fj,κ is a

country fixed effect and uj,t+κ is the disturbance.

Under the joint assumption of risk neutrality and rational expectations, the null hypothesis

of UIP is that β1,κ = 1 for all κ > 0 (and fj,κ = 0 for all j and κ > 0).

To illustrate the link between exchange rates and the yield-curve slope in the simplest

possible manner, we augment regression (A1) with the relative yield-curve slope S∗
j,t − St,

estimating:

ej,t+κ − ej,t = β1,κ
(
r∗j,t,κ − rt,κ

)
+ β2,κ

(
S∗
j,t − St

)
+ fj,κ + uj,t+κ (A2)

where S∗
j,t is the slope of the Foreign-country-j yield curve at time t, and St is the slope of the

base-country yield curve. β2,κ captures the relationship between the relative slope and exchange

rates that is orthogonal to interest-rate differentials.

Along with its curvature, the level and slope of the yield curve are known to capture a high

degree of variation in bond yields (Litterman and Scheinkman, 1991). We proxy the relative

level in regression (A2) with the κ-period interest-rate differential (r∗j,t,κ − rt,κ). This ensures

that the specification nests UIP, such that β2,κ captures the yield-curve slope’s contribution over

and above spot-yield differentials. Defining the ex post κ-period ERRP for Foreign currency as

rxFX
j,t,κ ≡ r∗j,t,κ − rt,κ − (ej,t+κ − ej,t) and combining with equation (A2) yields:

rxFX
j,t,κ = (1− β1,κ)

(
r∗j,t,κ − rt,κ

)
− β2,κ

(
S∗
j,t − St

)
− fj,κ − uj,t+κ (A3)

From this, we see that β2,κ can be interpreted as either the average Foreign depreciation (in

percent) or the average decrease in the ERRP (in pp) associated with a 1pp increase in the

slope of the Foreign yield curve relative to the US.

The estimated coefficients from Figure 1 are tabulated in columns (1)-(3) of Table A2.

While the tent-shaped relationship is specific to using the US dollar as the base currency, the

result is also robust to a number of changes to the specification, including: excluding spot-yield
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differentials from (A2), since these are themselves predicted by the yield curve slope (column

(4)); and including the relative curvature as an extra regressor in (A2) (columns (5)-(7)).

A.3 Alternative Currency Bases

The tent-shaped pattern for the relative slope coefficient appears specific to the USD currency

base. This is shown in Table A3, which plots the coefficients on the relative slope when regression

(A2) is estimated with each alternative currency base in turn (i.e., AUD, CAD, CHF, EUR,

JPY, GBP). For almost all currencies, the estimated coefficients on the relative are broadly

insignificant at business-cycle horizons, and there is very little sign of a tent-shaped relationship

with positive coefficients across horizons—except for the CHF.

B Theoretical Proofs and Derivations Appendix

B.1 Proofs to Propositions

Proof to Proposition 1. Holding Foreign factors volatilities constant (σ∗
i , i ∈ {T, d,P}),

an increase in Home transitory volatility (σT) is associated with a relatively steeper yield-curve

slope (22), but is reflected in interest-rate differentials (21) for κ = 1. In contrast, permanent

volatility (σP) affects neither the yield-curve slope nor yield differentials. For the d-factor,

the if condition follows directly by imposing δ = d20 such that condition (17) is enforced for the

specific SDF (18), and then comparing (21), (22) and (23). The only if condition follows because

when δ ̸= d20, the d factor behaves like the transitory factor (T) and there is no movement in

factor volatility which drives yield-curve slopes and ERRP, but is not reflected in short-maturity

interest-rate differentials.

Proof to Proposition 2. δ = 1
κ

(
d20 + (d0 + d1)

2(κ− 1)
)
imposes (17) for κ = κ—i.e., at

intermediate horizons. The equalization of the permanent risk factor (σP = σ∗
P
), along with

the purging of permanent risk from the transitory factors (α0 ≈ −α1, d0 ≈ −d1) ensures ERRP

are zero in the long-run and so there is no predictability. The following derivatives can be

calculated:

dSt

dσ2
d

=

(
1− 1

κ

)
d20
2
,

dSt

dσ2
T

=

(
1− 1

κ

)
α2
0

2
(B1)

dEt[rx
FX
t+κ]

dσ2
d

=
1

κ

d20
2
,

dEt[rx
FX
t+κ]

dσ2
T

=
1

κ

α2
0

2
(B2)

dyt,κ
dσd

= 0,
dyt,1
dσT

=

(
1− 1

κ

α2
0

2

)
(B3)

Proof to Proposition 4. Assuming λ1, λ2 < 0, and given that Bn−1 < 0, (26) delivers a

positive bond premium only if Cn−1 > 0 for n > 1. We require C0 = 0 so that z2,t is unspanned
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Table A2: Coefficient estimates from canonical UIP regression and regression augmented with
relative yield-curve slope

(1) (2) (3) (4) (5) (6) (7)
Maturity Canonical

UIP
Augmented UIP Slope

Only
Augmented UIP + Curvature

κ r∗κ − rκ r∗κ − rκ S∗ − S S∗ − S r∗κ − rκ S∗ − S C∗ − C
6m -0.89 -0.33 0.43 0.62 -0.10 0.93 -0.80

(0.58) (0.87) (0.58) (0.38) (0.84) (0.66) (0.71)
12m -0.77* -0.05 1.06 1.11** 0.17 1.74 -1.00

(0.43) (0.70) (0.88) (0.55) (0.69) (1.09) (1.06)
18m -0.62* 0.40 2.27** 1.73*** 0.66 3.32*** -1.51

(0.36) (0.55) (0.95) (0.65) (0.57) (1.25) (1.21)
24m -0.42 0.60 3.04*** 2.08*** 0.99* 5.03*** -2.93*

(0.33) (0.50) (1.07) (0.74) (0.52) (1.43) (1.49)
30m -0.27 0.80* 3.98*** 2.55*** 1.25*** 6.68*** -4.06**

(0.29) (0.45) (1.13) (0.76) (0.46) (1.51) (1.71)
36m -0.12 0.84** 4.37*** 2.73*** 1.26*** 7.25*** -4.44***

(0.26) (0.39) (1.12) (0.77) (0.41) (1.53) (1.68)
42m 0.07 0.88*** 4.31*** 2.51*** 1.34*** 7.97*** -5.80***

(0.25) (0.33) (1.05) (0.83) (0.35) (1.52) (1.78)
48m 0.26 0.89*** 3.89*** 2.01** 1.32*** 7.74*** -6.28***

(0.25) (0.29) (1.08) (0.96) (0.29) (1.58) (1.95)
54m 0.48** 0.98*** 3.54*** 1.43 1.33*** 7.05*** -5.88***

(0.23) (0.25) (1.12) (1.07) (0.25) (1.70) (2.09)
60m 0.66*** 1.08*** 3.32*** 1.01 1.34*** 6.28*** -5.08**

(0.22) (0.25) (1.20) (1.17) (0.23) (1.82) (2.18)
66m 0.84*** 1.19*** 3.15** 0.65 1.37*** 5.36*** -3.90*

(0.21) (0.24) (1.23) (1.25) (0.23) (1.87) (2.23)
72m 1.03*** 1.30*** 2.77** 0.13 1.42*** 4.31** -2.79

(0.18) (0.21) (1.14) (1.24) (0.21) (1.76) (2.03)
78m 1.16*** 1.33*** 2.03** -0.54 1.41*** 3.26** -2.27

(0.16) (0.19) (1.01) (1.17) (0.19) (1.60) (1.93)
84m 1.21*** 1.29*** 1.11 -1.25 1.33*** 1.97 -1.61

(0.16) (0.18) (0.95) (1.12) (0.17) (1.56) (2.05)
90m 1.20*** 1.22*** 0.31 -1.82 1.23*** 0.51 -0.39

(0.15) (0.17) (0.92) (1.12) (0.16) (1.55) (2.16)
96m 1.13*** 1.10*** -0.47 -2.31** 1.08*** -0.93 0.90

(0.15) (0.16) (0.88) (1.08) (0.15) (1.60) (2.31)
102m 1.02*** 0.96*** -1.14 -2.68** 0.93*** -2.08 1.86

(0.16) (0.16) (0.94) (1.11) (0.15) (1.62) (2.35)
108m 0.92*** 0.84*** -1.71* -3.00*** 0.81*** -3.06* 2.69

(0.15) (0.16) (1.02) (1.15) (0.15) (1.65) (2.36)
114m 0.88*** 0.80*** -1.89* -3.09*** 0.77*** -3.76** 3.76

(0.16) (0.17) (1.04) (1.15) (0.15) (1.54) (2.30)
120m 0.87*** 0.79*** -2.14** -3.28*** 0.76*** -4.19*** 4.19*

(0.16) (0.17) (1.04) (1.17) (0.16) (1.40) (2.17)

Notes: Column (1) presents results from canonical UIP regression (A1), a regression of κ-period exchange-rate

change ∆κet+κ on the κ-period return differential r∗t,κ − rt,κ. Columns (2)-(3) present results from augmented

regression (A2), using relative yield-curve slope S∗
t − St as an additional regressor. Column (4) presents results

when relative slope is only regressor. Columns (5)-(7) documents results when relative curvature is added as regressor

in (A2). Regressions estimated using pooled end-of-month data for 6 currencies (AUD, CAD, CHF, EUR, JPY,

GBP) against the USD from 1980:01 to 2024:09, including country fixed effects. The panel is unbalanced. ∗, ∗∗
and ∗ ∗ ∗ denote statistical significance at the 10%, 5% and 1% levels, respectively, using Driscoll and Kraay (1998)

standard errors (reported in parentheses).
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Table A3: Relative slope coefficient from augmented UIP regression using alternative base
currencies

(1) (2) (3) (4) (5) (6)
Base: AUD CAD CHF EUR GBP JPY

S∗ − S S∗ − S S∗ − S S∗ − S S∗ − S S∗ − S
6 months 0.02 0.27 0.69* -0.49 -0.64 0.77

(0.52) (0.38) (0.40) (0.77) (0.64) (0.48)
12 months 0.28 0.60 1.31** -1.19 -0.90 1.33*

(0.73) (0.54) (0.61) (1.27) (0.90) (0.74)
18 months 0.40 0.60 1.86** -1.27 -0.58 1.50*

(0.77) (0.65) (0.74) (1.43) (0.95) (0.91)
24 months 0.35 0.65 2.09*** -1.00 -0.47 1.64

(0.77) (0.70) (0.76) (1.27) (1.01) (1.01)
30 months 0.20 0.35 2.38*** -1.09 -0.36 1.71

(0.82) (0.76) (0.74) (1.14) (1.05) (1.10)
36 months 0.05 -0.23 2.32*** -1.86* -0.63 1.25

(0.89) (0.90) (0.72) (1.12) (1.14) (1.20)
42 months -0.28 -1.24 2.07*** -2.77*** -1.13 0.46

(0.99) (0.96) (0.75) (1.05) (1.23) (1.30)
48 months -0.70 -2.03** 1.37* -3.70*** -1.76 -0.81

(1.01) (0.98) (0.82) (1.01) (1.24) (1.40)
54 months -0.52 -2.43*** 0.58 -3.71*** -1.88* -1.55

(0.97) (0.93) (0.86) (1.08) (1.14) (1.40)
60 months 0.01 -2.25** -0.03 -2.76** -1.78 -1.74

(0.91) (0.94) (0.84) (1.33) (1.16) (1.45)
66 months 0.59 -1.68* -0.52 -1.14 -1.59 -1.21

(0.90) (0.98) (0.80) (1.70) (1.15) (1.50)
72 months 1.07 -1.44 -1.11 0.57 -1.31 -0.55

(0.94) (0.97) (0.73) (1.88) (0.94) (1.47)
78 months 1.30 -0.86 -1.57** 2.02 -1.25 0.54

(1.06) (0.94) (0.72) (1.77) (0.86) (1.36)
84 months 1.54 -0.34 -1.81** 2.91* -0.97 1.97

(1.09) (0.97) (0.75) (1.64) (0.81) (1.21)
90 months 2.00* -0.29 -2.00** 3.27** -0.68 2.58**

(1.09) (0.95) (0.82) (1.53) (0.77) (1.13)
96 months 2.20* -0.74 -2.37*** 3.01** -0.88 2.45**

(1.14) (0.92) (0.85) (1.48) (0.81) (1.10)
102 months 2.29* -1.47 -2.70*** 2.35 -1.16 2.35**

(1.20) (1.01) (0.91) (1.54) (0.90) (1.05)
108 months 2.24* -2.16** -3.25*** 1.63 -1.65* 2.21**

(1.21) (1.10) (0.98) (1.72) (0.89) (1.10)
114 months 1.86 -2.48** -3.58*** 1.41 -2.11** 1.97*

(1.19) (1.19) (1.01) (1.87) (0.84) (1.17)
120 months 1.30 -2.90** -3.91*** 1.14 -2.74*** 1.09

(1.18) (1.26) (1.03) (2.04) (0.90) (1.16)

Notes: Coefficients on relative yield curve slope from extended regression (A2), using relative yield-curve

slope S∗
t −St as an additional regressor, for different currency bases. Regressions estimated using pooled

end-of-month data for 7 currencies (AUD, CAD, CHF, EUR, JPY, GBP, USD) from 1980:01 to 2019:12,

including country fixed effects. The panel is unbalanced. ∗, ∗∗ and ∗ ∗ ∗ denote statistical significance

at the 10%, 5% and 1% levels, respectively, using Driscoll and Kraay (1998) standard errors (reported

in parentheses).
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in short interest rates, inspecting the recursion for Cn (see Appendix B.3), Cn−1 > 0 is only

possible because E[z0,t+1] = z2,t, such that the recursion for Cn−1 depends on An−1 > 0.

B.2 Derivations for Section 4.1

Consider equations (19)-(20), repeated below for convenience:

mT

t,t+1 = log β − 1

2
γσ2

T + α0ϵT,t+1 + α1ϵT,t−
1

2
δσ2

d + d0ϵd,t+1 + d1ϵd,t︸ ︷︷ ︸
unspanned transitory factor

mP

t,t+1 =− 1

2
σ2
P + ϵP,t+1

Construct mT
t,t+κ =

∑κ−1
i=0 mT

t+i,t+i+1, m
P
t,t+κ =

∑κ−1
i=0 mP

t+i,t+i+1 as follows:

mT
t,t+κ = κ log β − 1

2
γκσ2

T + α0ϵT,t+1 + α1ϵT,t + · · ·+ α0ϵT,t+κ + α1ϵT,t+κ−1

−1

2
δκσ2

d + d0ϵd,t+1 + d1ϵd,t + · · ·+ d0ϵd,t+κ + d1ϵd,t+κ−1, (B4)

mP
t,t+κ = −1

2
κσ2

P + ϵPt+1 · · ·+ ϵPt+κ (B5)

These imply the following moments:

Et[m
T
t,t+κ] = κ log β − 1

2
γκσ2

T + α1ϵT,t −
1

2
δκσ2

d + d1ϵd,t,

Et[m
P
t,t+κ] = −1

2
κσ2

P,

vart(m
T
t,t+κ) = α2

0σ
2
T + (α0 + α1)

2(κ− 1)σ2
T + d20σ

2
d + (d0 + d1)

2(κ− 1)σ2
d,

vart(m
P
t,t+κ) = κσ2

P

Combining (9) with the above yields:

−rt,κ = κ log β − 1

2
γκσ2

T − 1

2
κσ2

P +
1

2

{
α2
0σ

2
T + (α0 + α1)

2(κ− 1)σ2
T

}
(B6)

+
1

2

{
d20σ

2
d + (d0 + d1)

2(κ− 1)σ2
d + κσ2

P
}
,

= κ log β +
σ2
T
2

(
α2
0 − γκ+ (α0 + α1)

2(κ− 1)
)
+

σ2
d

2

(
d20 − γκ+ (d0 + d1)

2(κ− 1)
)

Condition (21) then follows from yt,κ = 1
κrt,k.

B.2.1 Internationally Incomplete Markets

When markets are incomplete, we follow Backus et al. (2001) and Lustig and Verdelhan (2019)

and consider a (log) exchange-rate process is given by et+1 − et = mt,t+1 −m∗
t,t+1 + ηt+1 where

ηt+1 is an incomplete-markets wedge.
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Proposition D.1 (Term Structure and Market Incompleteness) When international fi-

nancial markets are incomplete (ηt+1 ̸= 0), relative yield-curve slopes are unaffected covt(log(S
∗
t )−

log(St), ηt+1) = 0 and proj(Et[rx
FX
t+κ] | ϵ̃) is unchanged.

Proof : Following Lustig and Verdelhan (2019), frictionless trade across borders in Home and

Foreign bonds for κ = 1 (i.e., (8) and (12)) and Foreign analogs, implies:

−Et[ηt+1] =
1

2
vart(ηt+1) + covt(mt+1, ηt+1), (B7)

Et[ηt+1] =
1

2
vart(ηt+1) + covt(m

∗
t+1,−ηt+1) (B8)

Evaluating (8), (12) and Foreign analogs for yt,κ, y
∗
t,κ for κ > 1, then covt(yt,κ, ηt+1) = 0 ∀κ

which delivers the first part of the proposition. Moreover, additionally using (16) implies

covt(ϵ̃, ηt+1) = 0, delivering the second part.

The proposition above does not depend on the specific form of SDFs and shows that, while

market incompleteness will affect the volatility and predictability of exchange rates, it will not

alter the relationship we study.17

One example of market incompleteness is the presence of convenience or liquidity yields.

As shown in Engel and Wu (2022) and Jiang et al. (2024), these increase the predictability of

exchange rates. However, Corsetti, Lloyd, and Marin (2020) shows convenience yields increase

the predictability of the incomplete-markets wedge ηt+1, but are uncorrelated with the relative

slope as long as they are constant along the term structure.

B.3 Derivations for Section 4.3

We focus on a symmetric model with country-specific factors.

Bond-Pricing Recursions. First, consider the one-period bond, n = 1:

pt,1 = Et [mt,t+1] +
1

2
vart (mt,t+1)

= z0,t +

(
1− λ1

2

)
z1,t −

λ2

2
z2,t +

λ2
1

2
z1,t +

λ2
2

2
z2,t

= −z0,t + z1,t

where the first line uses the expression for the bond price for n = 1, the conditional expectation

of equation (25) is used in the second line, and the resulting expression is rearranged to yield

the third line. The one-period risk-free yield yt,1 is therefore given by:

yt,1 = z0,t − z1,t

17Lustig and Verdelhan (2019) discuss that market incompleteness is an unlikely candidate for resolving
exchange-rate puzzles, although Marin and Singh (2024) show that international market incompleteness has
stronger implications in the presence of within country idiosyncratic risk.
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Next, consider the general n-period bond price:

pt,n =Et [mt,t+1 + pt+1,n−1] +
1

2
vart (mt,t+1 + pt+1,n−1)

=− z0,t +

(
1− 1

2
λ2
1

)
z1,t −

1

2
λ2
2z2,t − Ωn−1 −An−1z0,t+1 −Bn−1z1,t+1 − Cn−1z2,t+1

+
1

2
vart

(
λ1

√
z1,tut+1 + λ2

√
z2,tu2,t+1 −An−1z0,t+1 −Bn−1z1,t+1 − Cn−1z2,t+1

)
=− z0,t +

(
1− 1

2
λ2
1

)
z1,t −

1

2
λ2
2z2,t −An−1[(1− ϕ0)z2,t + ϕ0z0,t]

−Bn−1[(1− ϕ1)z2,t + ϕ1z1,t]− Cn−1[(1− ϕ2)θ + ϕ2z2,t]

+
1

2

(
λ2
1z1,t + λ2

2z2,t +A2
n−1σ

2
0z0,t +B2

n−1σ
2
1z1,t + C2

n−1σ
2
2z2,t − λ1Bn−1σ1z1,t − λ2Cn−1σ2z2,t

)
where the second line uses the linear pricing equation and (25); and the third line uses the

process for the factors. Rearranging,the recursions can be seen in the final line:

Ωn =Ωn−1 + Cn−1(1− ϕ2)θ

An =1 +An−1ϕ0 −A2
n−1σ

2
0

Bn =− 1 +Bn−1ϕ1 +
1

2
λ1σ1Bn−1 −

1

2
(Bn−1σ1)

2

Cn =An−1(1− ϕ0) +Bn−1(1− ϕ1) + ϕ2Cn−1 +
1

2
λ2σ2Cn−1 −

1

2
(Cn−1σ2)

2

with initial conditions A0 = C0 = 0, B0 = −1.

Bond Excess Returns. The ex ante n-period bond excess return is defined as Et[rx
(n)
t,t+1] =

Et[pt+1,n−1 − pt,n − yt,1]. This can be written as:

Et

[
rx

(n)
t,t+1

]
=Et [pt+1,n−1 − pt,n − yt,1]

=Et [−Ωn−1 +Ωn −An−1z0,t+1 +Anz0,t −Bn−1z1,t+1 +Bnz1,t − Cn−1z2,t+1 + Cnz2,t]

− z0,t + z1,t

=Cn−1(1− ϕ2)θ2 −An−1Et[z0,t+1] +Anz0,t −Bn−1Et[z1,t+1] +Bnz1,t

− Cn−1Et[z2,t+1] + Cnz2,t − z0,t + z1,t

= [−An−1ϕ0 +An − 1] z0,t + [−Bn−1ϕ1 +Bn + 1] z1,t+

[−An−1(1− ϕ0)−Bn−1(1− ϕ1)− Cn−1ϕ2 + Cn] z2,t

where line 2 uses the pricing equation, line 3 uses the recursion for An defined above, and line 4

expands the conditional expectation of factors and collects like terms. Evaluating the expression

above in the limit as n → ∞ yields:

Et

[
rx

(∞)
t,t+1

]
= [A∞(1− ϕ0)− 1] z0,t + [B∞(1− ϕ1) + 1] z1,t +

[(1− ϕ2)C∞ −A∞(1− ϕ0)−B∞(1− ϕ1)] z2,t (B9)
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which can be rearranged as:

Et

[
rx

(∞)
t,t+1

]
= [A∞(1− ϕ0)] (z0,t − z2,t) + [B∞(1− ϕ1)] (z1,t − z2,t) +

[C∞(1− ϕ2)] z2,t − z0,t + z1,t (B10)

The bond premium is driven by the distance of factors 0 and 1 from their long-run mean and

from movements in the long run mean itself. From the recursion formulas:

Et

[
rx

(∞)
t,t+1

]
=

[
−1

2
(A∞σ0)

2

]
z0,t +

[
1

2
λ1σ1B∞ − 1

2
(B∞σ1)

2

]
z1,t +

[
1

2
λ2σ2C∞ − 1

2
(C∞σ2)

2

]
z2,t

Then, the ex ante bond risk premium is given by:

Et

[
rx

(∞)
t,t+1

]
+

1

2
vart(rn,t+1) =− covt(pt+1,n−1,mt,t+1)

=− λ1σ1Bn−1z1,t − λ2σ2Cn−1z2,t,

recovering equation (26) in the main body. Factor zero does not appear because there is a zero

price of risk.

Yield-Curve Slope and Bond Premium Approximation. The yield curve slope is de-

fined as the difference between yields on n- and 1-period bonds:

St,n =yt,n − yt,1 =
1

n
(Ωn +An +Bnz1,t + Cnz2,t)− z0,1 + z1,t

Evaluating this expression in the limit as n → ∞ yields:

St,∞ = C∞(1− ϕ2)θ − z0,t + z1,t

which arises from the recursions for An, Bn and Cn, where An, Bn and Cn have a finite limit and

Ωn grows linearly. The approximation of the slope by the bond risk premium St,∞ ≈ Et[rx
(∞)
t,t+1]

is also verified within the CIR model. Over long enough samples, Et[z0,t] = Et[z1,t] = Et[z2,t] =

θ, yielding the result.

Exchange Rates Under complete markets, (log) one-period exchange rate changes are deter-

mined as ∆et+i,t+i+1 = m∗
t+i,t+i+1−mt+i,t+i+1. The expected one period exchange rate change

is therefore given by:

Et[et+1]− et = Et[mt,t+1 −m∗
t,t+1] = −(z0,t − z∗0,t) + (1− λ2

1/2)(z1,t − z∗1,t) + λ2/2(z2,t − z∗2,t)

We focus on conditional risk premia because our symmetric setup implies that unconditional

risk premia Et[rx
FX
t+1] are zero. The one-period ERRP can be derived by combining equations
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(14) and (25), assuming complete markets:

Et[rx
FX
t,t+1] = (λ2

1/2)Et[z1,t+1 − z∗1,t+1] + (λ2
2/2)Et[z2,t+1 − z∗2,t+1] (B11)

where an increase in z1,t+1 − z∗1,t+1 leads to a fall in rt+1 − r∗t+1 and an increase in conditional

ERRP, as in Fama (1984). However, the ERRP also depends on the second factor (z2,t − z∗2,t)

so long maturity bonds are a useful orthogonal predictor, as in Ang and Chen (2010). We

investigate longer horizon currency returns below.

Transitory-Permanent Variation. We begin by showing how to eliminate permanent in-

novations in the model, such that ERRP in the long-run are zero—and therefore there is no

long-riun predictability. If there are no permanent innovations, Alvarez and Jermann (2005)

show this requires:

Et

[
rx

(∞)
t,t+1

]
=

1

2
vart(mt,t+1)

Since this must be true for any value of z0,t, z1,t, z2,t, using (B9), this requires:

[A∞(1− ϕ0)− 1] = 0, (B12)

[B∞(1− ϕ1) + 1] =
1

2
λ2
1, (B13)

[C∞(1− ϕ2)−B∞(1− ϕ1)−A∞(1− ϕ0)] =
1

2
λ2
2 (B14)

such that:

Et

[
rx

(∞)
t+1 − rx

(∞) ∗
t+1

]
= (λ2

1/2)[z1,t − z∗1,t] + (λ2
2/2)[z2,t − z∗2,t] (B15)

coinciding exactly with the one-period Et[rx
FX
t+1].

Longer-Horizon Currency Movements. The κ-step-ahead exchange-rate change is then

given by:

Et[et,t+κ]− et =
κ∑

i=1

Et[∆
1et+i] = (B16)

1− ϕκ
0

1− ϕ0
(z∗0,t − z0,t) + (1− ϕ0)

κ−1∑
i=0

i−1∑
j=0

ϕj
0(z

∗
2,t+i−1−j − z2,t+i−1−j)︸ ︷︷ ︸∑κ−1

i=1 Et[z∗0,t+i−z0,t+i]



+
λ2
1 − 1

2


1− ϕκ

1

1− ϕ1
(z∗1,t − z1,t) + (1− ϕ1)

κ−1∑
i=0

i−1∑
j=0

ϕj
1(z

∗
2,t+i−1−j − z2,t+i−1−j)︸ ︷︷ ︸∑κ−1

i=1 Et[z∗1,t+i−z1,t+i]


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+
λ2
2

2

1− ϕk
2

1− ϕ2
(z∗2,t − z2,t)︸ ︷︷ ︸∑κ−1

i=1 Et[z∗2,t+i−z2,t+i]

Importantly, expected depreciations are stricly increasing in both factors (z1,t, z2,t) ceteris

paribus. This implies higher relevance of the second factor at longer horizons through two

chanels. First, because factor 2 is assumed more persistent. Second, because factor 1 tend to

factor 2 in the long run.

B.3.1 General Formulation with Hidden Factors.

Finally, as in Section 4.1, we consider a generalization of the representative Home investor’s

SDF such that factor 2 can be hidden from longer maturity interest rates:

−mt,t+1 = z0,t + (ξ + λ2
1/2)z1,t + λ1

√
z1,tϵt+1 + (ζ + λ2

2/2)z2,t + λ2
√
z2,tϵ2,t+1 (B17)

The price of an n−period bond is given by

p
(n)
t = −z0,t − (ξ + λ2

1/2)z1,t − (ζ+λ
2
2/2)z2,t − Ωn−1 −An−1z0,t −Bn−1z1,t − Cn−1z2,t

+
1

2

{
λ2
1z1,t + λ2

2z2,t +A2
n−1σ

2
0z0,t +B2

n−1σ
2
1z1,t + C2

n−1σ
2
2z2,t − λ1σ1Bn−1z1,t − λ2σ2Cn−1z2,t

}
(B18)

It follows that:

Ωn =Ωn−1 + Cn−1(1− ϕ2)θ

An =1 +An−1ϕ0 −A2
n−1σ

2
0

Bn =ξ +Bn−1ϕ1 +
1

2
λ1σ1Bn−1 −

1

2
(Bn−1σ1)

2

Cn =ζ +An−1(1− ϕ0) +Bn−1(1− ϕ1) + ϕ2Cn−1 +
1

2
λ2σ2Cn−1 −

1

2
(Cn−1σ2)

2

where Ω0 = 0, A0 = 1, B0 = ξ, C0 = ζ.

Consider, for example, the maturity κ = 2:

p
(2)
t = −[ξ(1− ϕ2)θ2]−

[
(1 + ϕ0)−

1

2
σ2
0

]
z0,t −

[
ξ(1 + ϕ1) +

1

2
λ1ξσ1 −

1

2
ξ2σ2

1

]
z1,t(B19)

−
[
(1− ϕ0) + ξ(1− ϕ1)− ζ(1 + ϕ2)−

1

2
ζ2σ2

2 + λ2ζσ2

]
z2,t

therefore,

p
(2)
t = Ω2 +A2z0,t +B2z1,t, if ζ2σ2

2 + ζ(1 + ϕ2 − λ2σ2) + [ξ(1− ϕ1) + (1− ϕ0)] = 0

which, once again imposes (17) and ensures factor z2,t is not reflected in the spot-yield differ-

ential.
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