The Natural Rate of Interest in Small-Open Economies: Asymmetries and Fragmentation

Ambrogio Cesa-Bianchi^{abc} Simon Lloyd^{ab} Rana Sajedi^d Agustina Sampaolesi^e

> ^aBank of England ^bCentre for Macroeconomics ^cCentre for Economic Policy Research ^dBloomberg L.P. ^eUniversity of Nottingham

> > August 2025

The views expressed here are those of the authors and do not necessarily represent those of the Bank of England.

Motivation

- Debate continues on whether rates will return to pre-pandemic lows, as resilient economic activity to tighter monetary policy suggests R^* may now be higher
- Analyzing interest-rate trends requires assessment of secular forces
- ➤ Much prior work centers on US/'Global' R*: common trends across countries
- ▶ Increased geoeconomic fragmentation risks motivate two key questions:
 - How might fragmentation influence interest-rate prospects across countries, given differing economic outlooks?
 - ► Could trajectory of integration itself drive cross-country interest-rate differences?

This Paper

- ightharpoonup Structural life-cycle model studying trend real interest rates in SOEs \tilde{R}^*
- ▶ Incl. multiple potential world-SOE (here, UK) asymmetries in unified setup
- Six potential drivers: productivity growth, population growth, longevity, risk premia, government debt, fragmentation of global capital markets

Lit.

This Paper

- ightharpoonup Structural life-cycle model studying trend real interest rates in SOEs \tilde{R}^*
- ▶ Incl. multiple potential world-SOE (here, UK) asymmetries in unified setup

- Six potential drivers: productivity growth, population growth, longevity, risk premia, government debt, fragmentation of global capital markets
- * Against backdrop of \downarrow Global R^* of \sim 2.5pp in the past half century, model suggests a more muted decline of \sim 1.5pp in UK
- ★ Looking ahead, increased geoeconomic fragmentation poses significant upside risks to UK equilibrium rates, of nearly 0.5pp

Set Up

- ► Two-country neoclassical overlapping generations (OLG) model
- ► Home = SOE (UK) and Rest of the World = Advanced Economies (AEs)
- Finitely-lived households:
 - Face age- and region-specific mortality rates
 - Supply labour
 - Save in capital, domestic bonds or foreign assets
 - Pay taxes/receive transfers from the government
- Two wedges:
 - $ightharpoonup \varphi$: premium between RoR on domestic capital (r^k) and dom. govt. bond $(r = \tilde{R}^*)$
 - $ightharpoonup \phi$: premium between RoR on foreign assets ($r^f = \text{Global } R^*$) and dom. bond

Open-Economy Wedge

 ϕ denotes the elasticity of the domestic real interest rate (price) with respect to changes in NFA (quantities)

$$r_t = r_t^f - \phi rac{NFA_t}{Y_t}$$

Three cases:

- $ightharpoonup \phi = 0$: SOE, perfect capital mobility
- $ightharpoonup \phi
 ightarrow \infty$: NFA=0, closed economy
- $ightharpoonup \phi > 0$: imperfect capital mobility (two margins of adjustment: r and NFA)

Calibration

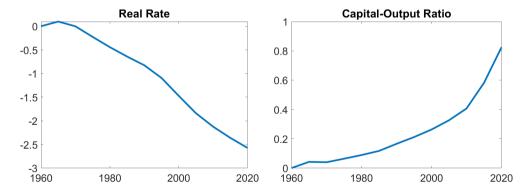
Calibration mechanically pins down pre-1950 initial conditions:

- Age-specific parameters (ρ_j, β_j) : match life-cycle profiles from UK Wealth and Assets Survey (WAS) and US (as RoW) SCF
- ▶ **Aggregate parameters** (μ, α, δ) : match targets from PWT

Simulate model with trends for UK and RoW from 1950 onwards:

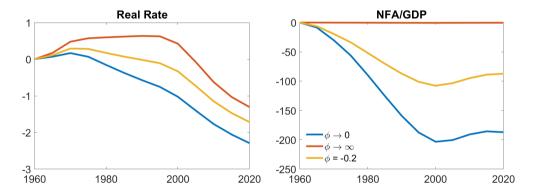
- ▶ Population growth n_t and longevity $\Pi_{i,t}$ (UN Population Statistics)
- Productivity growth e_t (Ziesemer, 2023)
- ightharpoonup Government debt g_t (IMF Global Debt Database)
- \triangleright Risk premia φ_t (yield on BAA vs. and 10-year Treasury spread)

Calibration: Open-Economy Wedge

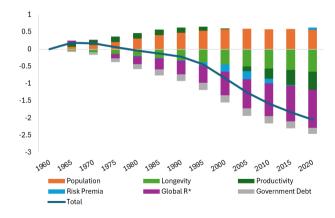

- ightharpoonup Baseline calibration for ϕ is static
- ► Taking wedge equation to data by projecting long-term real rates (UK vs. RoW) on the UK net-foreign asset to GDP ratio (ONS):

$$\log \left(\frac{R_t^{UK,10y}}{R_t^{RoW,10y}} \right) = \phi_1 + \phi_2 \left(\frac{NFA_t}{GDP_t} \right) + \varepsilon_t$$

▶ Results suggest $\phi_2 \approx -0.2$ (this is ongoing work though)


Global R^* (\tilde{R}^* with Perfect Capital Mobility)

Note: Both panels present changes relative to 1960. Left panel presents change in percentage points, right panel presents change in ratio.


$ilde{R^*}$ with Imperfect Capital Mobility

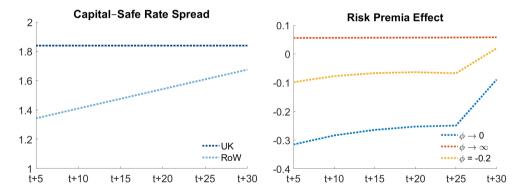
Note: Left panel presents change in percentage points while right panel presents change in fraction, all relative to 1960.

Decomposition of UK $\tilde{R^*}$

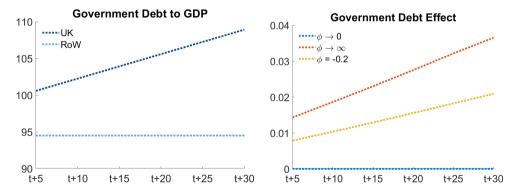


Note: $\phi = -0.2$. Decomposition of percent point change relative to 1960, varying one driver at a time.

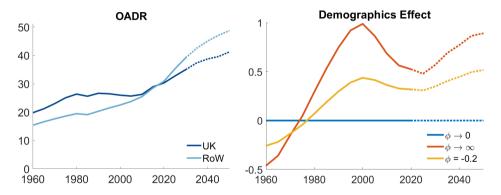
Taking Stock


- ► Global R* acts as our anchor for domestic rates
- International financial market frictions create a wedge: the more imperfect is capital mobility, the less sensitive an SOE's trend rate is to global factors
- \Rightarrow Asymmetries contribute to wedge between Global R^* and SOE $ilde{R}^*$
- * Accounting for realistic frictions to capital mobility for UK, asymmetries in productivity slowdown and demographic forces explain difference w.r.t. Global R^*
- Next, we can use this framework to think about the future, including role for fragmentation

Cross-Country Asymmetries in Productivity

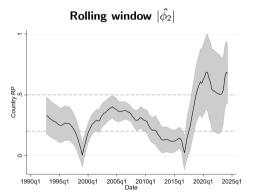

Note: Productivity growth rate (percent) prospects in left panel assume a 1sd increase in t + 30 just for UK. Right panel are differences, in percentage points, w.r.t. Global R^* estimated without productivity changes. All cases include demographic projections.

Cross-Country Asymmetries in Risk Premia


Note: panels are in percentage points. Risk premia prospects in left panel assume a 1sd increase t + 30 just for RoW. Right panel are differences w.r.t. Global R^* estimated with risk premia changes. All cases include demographic projections.

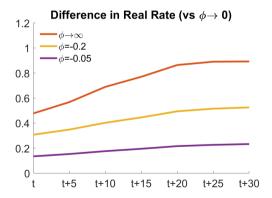
Cross-Country Asymmetries - Government Debt

Note: Government debt ratio (percent) prospects in left panel assume a 10pp increase in t + 30 just for UK. Right panel are differences, in percentage points, w.r.t. Global R^* estimated without government debt ratio changes. All cases include demographic projections.


Cross-Country Asymmetries in Demographics

Note: Old-Age Dependency Ratio (65+/20-64 years-olds) projections in left panel are from UN Population Statistics data, based on median fertility scenario. Right panel are differences w.r.t. Global R^* . All cases only include demographic projections for future path.

Fragmentation


We aim to evaluate the extent to which the degree of global capital mobility has evolved over time...

Note: Country RP ϕ in absolute value, estimated with 15 years rolling windows in black, 95% confidence intervals in shaded grey area.

Potential Effects of Fragmentation

The acceleration of fragmentation presents an upward risk

Note: panel is in percentage point difference w.r.t. perfect capital mobility estimation - Global R^* .

Conclusions

- Explored behaviour and determinants of trend real interest rates in SOEs (\tilde{R}^*) , focusing on the case of the UK over 1960-2020
- ▶ Due to global capital market imperfections, decline in UK \tilde{R}^* of \sim 1.5pp less pronounced than decline in Global R^* of \sim 2.5pp over the past 60 years
- Productivity and demographic factors weighed more on Global rate than UK's
- ▶ Looking ahead, asymmetries could continue to generate a wedge between rates
- ▶ Without asymmetries, accelerated geoeconomic fragmentation poses upside risks
- ightharpoonup Reduced (financial) openness could increase UK's equilibrium rates by \sim 0.8pp

Appendix

Households

- \triangleright Each period, a continuum of mass N_t of households is 'born'
- The growth rate of consecutive cohorts n_t is exogenous, where $(1 + n_t) \equiv N_t/N_{t-1}$
- ► They solve

$$\max_{c_{t,j},a_{t,j}} \sum_{j=1}^{J} \beta_j \Pi_{t,j} \log(c_{t,j})$$

subject to

$$c_{t,j} = \rho_j w_{t+j-1} + (1 + r_{t+j-2}) a_{t,j-1} - a_{t,j} + \varpi_{t,j}$$
 for $j = 1, \dots, J$

where the unconditional survival probability $\Pi_{t,i}$ is also exogenous

Firms

Back

- A monopolistic retailer buys Y_t units of an intermediate good and sells it as a final good with a net mark-up μ over its marginal cost
- Intermediate good producer solves:

$$\max_{K_t, L_t} \frac{1}{1+\mu} Y_t - \left(r_t^k p_t^k K_{t-1} + w_t L_t \right)$$

given technology

$$Y_t = \left(\alpha K_{t-1}^{\frac{\sigma-1}{\sigma}} + (1-\alpha)(E_t L_t)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

where E_t is labour-augmenting technological process (exogenous growth rate e_t)

Financial Intermediary

Back

- ightharpoonup Takes aggregate assets of the households, promising r_t
- ▶ Buys government debt or turns them into capital goods
- \triangleright We assume φ_t is an exogenous wedge such that

$$1 + r_t = \left(1 + r_{t+1}^k - \delta\right) \frac{p_{t+1}^k}{p_t^k} - \varphi_t$$

Government

Back

Government budget constraint is given by:

$$G_t = (1 + r_{t-1})G_{t-1} + S_t - T_t$$

where

$$\mathcal{T}_t = \sum_{j=1}^{J^R-1} au_{j,t} = (J^R - 1) au_t \implies au_t = rac{1}{J^R - 1}\mathcal{T}_t$$
 $\mathcal{S}_t = \sum_{j=J^R}^J s_{j,t} = (J - J^R)s_t \implies s_t = rac{1}{J - J^R}\mathcal{S}_t$

with the government debt-to-GDP ratio, g_t , exogenously determined

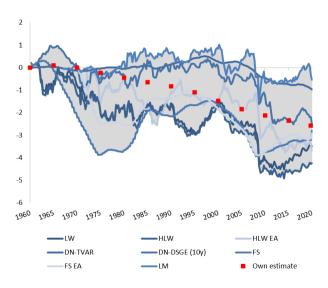
Market Clearing

Back

Labour Markets

$$L_t = \sum_{j=1}^J \mathsf{\Pi}_{t-j+1,j} \mathsf{N}_{t-j+1} \rho_j$$

Goods Markets


$$\sum_{i=1}^{J} \Pi_{t-j+1,j} N_{t-j+1} \varpi_{t-j+1,j} = \mathcal{P}_t + \mathcal{B}_t - \mathcal{T}_t + \mathcal{S}_t$$

Asset Markets in SOE

$$\sum_{i=1}^{J} \Pi_{t-j+1,j} N_{t-j+1} a_{t-j+1,j} = \textit{NFA}_{t} + \textit{G}_{t} + \textit{p}_{t}^{\textit{k}} \textit{K}_{t}$$

Selected Global R^* estimates

Literature Review

Drivers of R^* in **SOEs:** Lisack et al. (2021); Carvalho et al. (2023); Kuncl and Matveev (2023)

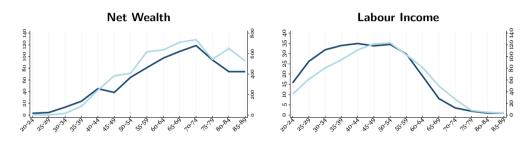
First to include all drivers together

Semi-structural models of r^* : Laubach and Williams (2003); Holston et al. (2017); Harrison et al. (2024)

Focus on longer-term trends, abstracting from effects of shocks over shorter horizons

Empirical studies of country-specific R^* : Ferreira and Shousha (2023); Davis et al. (2024)

Provide a structural decomposition of drivers


Global R^* models: Cesa-Bianchi et al. (2023); Del Negro et al. (2019); Kiley (2020)

Incorporate possible deviations from global trends, fragmentation effects

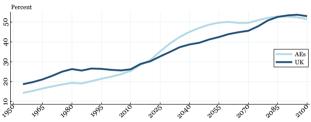
Fragmentation and interest rates: International Monetary Fund (2023)

► Conduct a structural analysis Back

Life-cycle profiles

Note: ife-cycle Profiles in the UK (dark, left) and US (light, right). Thousands GBP and USD, respectively. Sources: WAS (2011-2020), and SCF (2019).

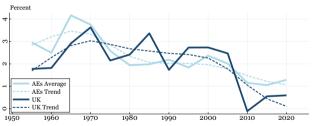
Aggregates


Targets	US	UK
Capital depreciation	3.6%	3.6%
Labour income share	60%	57%
Capital to output ratio	4.5	4.2

Source: Penn World Tables (PWT), 1950-2019 average

Demographics

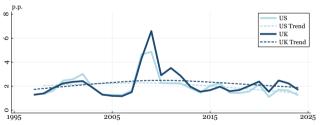
Old-Age Dependency Ratio (65+/20-64 years-olds)



Source: UN Population Statistics, projections based on median fertility scenario.

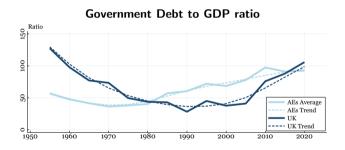
Productivity

Labour-Augmenting Technology



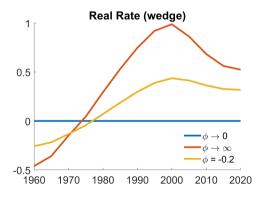
Source: Ziesemer (2023). CES estimation, 0.7 elasticity.

Risk Premia


Return to Capital and Risk-Free Rate Wedge

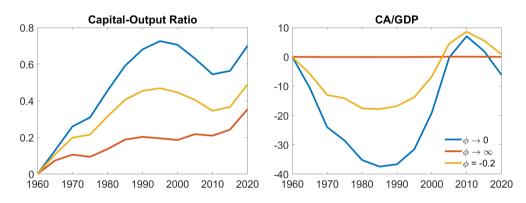
Source: Spread in p.p., computed as the difference between the yield on BAA bonds and 10-year Treasuries.

Government Debt

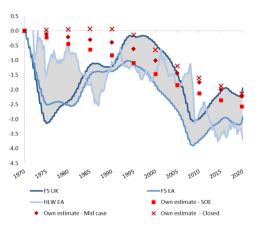

Source: Global Debt Database (GDD), IMF.

Open-Economy Wedge

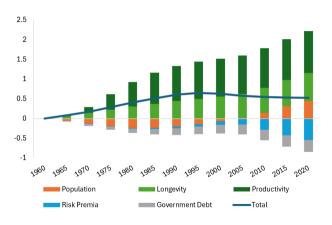
	$\log\left(R^{UK,10y}/R^{US,10y}\right)$	
NFA/GDP $(\hat{\phi}_2)$	-0.121*	
	(2.05)	
$\mathbb{1}^{\mathit{GFC}}$	-0.329***	
	(-4.93)	
$_{ extstyle 1}$ Covid	-0.580***	
	(-6.15)	
Constant $(\hat{\phi}_1)$	0.127***	
, ,	(7.85)	
Observations	186	
R^2	0.347	
* n < 0.05 ** n < 0.01 *** n < 0.001		


UK $\tilde{R^*}$ with Imperfect Capital Mobility

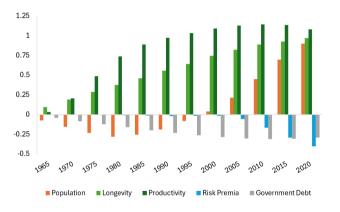
Note: Panel presents change in percentage points relative to SOE case.


UK \tilde{R}^* with Imperfect Capital Mobility (2)

Note: All panels present changes in fraction relative to 1960.



UK selected R^* estimates



Source: models included are Ferreira-Shousha (FS), and Holston-Labauch-Williams (HLW). Estimates refer to 'UK' or 'EA'. Own estimates in p.p. differences w.r.t. 1970.

UK \tilde{R}^* decomposition - vs Global R^* -

UK \tilde{R}^* contributions - vs Global R^* -

Note: differences in estimated R^* contributions with $\phi=-0.2$ vs $\phi\to0$, in changes w.r.t. 1960 real interest rate, shutting down one driver at a

